
Modern Computational Environment
for Seismic Analysis of Highway
Bridges

ii

PUBLICATION NO. FHWA-RD-99-114

t 3
U.S. Department of Transportation
Federal Highway Administration

Research, Development, and Technology
Turner-Fairbank Highway Research Center
6300 Georgetown Pike
McLean, VA 22101-2296

DECEMBER 1999

t :
;

.\

-I.
-1.

APPROXIMATE CONVERSIONS TO SI UNITS
Symbol When You Know Multiply By To Find Symbol

in inches
ft feet
yd
mi

yards
miles

LENGTH
25.4
0.305
0.914
1.61

AREA

millimeters
meters
meters
kilometers

mm
m

L

in2

VOLUME

square inches 645.2
w square feet 0.093

square millimeters

Y@ square yards 0.836
square meters
square meters

ac acres 0.405 hectares
miP square miles 2.59 square kilometers

fl o?!
gal
fP
Y@

NOTE:

PbL
T

“F

fc
fl

fluid ounces 29.57 milliliters
gallons 3.785 liters
cubic feet 0.028 cubic meters
cubic yards 0.765 cubic meters

Volumes greater than 1000 I shall be shown in rnj.

mL mL milliliters 0.034 fluid ounces fl 02
L L liters 0.264 gallons gal
m3 m3 cubic meters 35.71 cubic feet ft3
m3 m3 cubic meters 1.307 cubic yards Y@

MASS MASS

ounces 28.35
pounds 0.454
short tons (2006 lb) 0.907

grams
kilograms
megagrams
(or “metric ton’)

TEMPERATURE (exact) .

Fahrenheit 5(F-32)/9 Celcius
temperature or (F-32)/1.8 temperature

ILLUMINATION

foot-candles 10.76 lux
foot-Lamberts 3.426 candela/m*

FORCE and PRESSURE or STRESS

Ibf
Ibfln*

poundforce
poundforce per
square inch

4.45 newtons N N newtons 0.225
6.89 kilopascals kPa kPa kilopascals 0.145

m*

Ii
km*

mm* square millimeters

VOLUME

0.0016 square inches
m* square meters 10.764 square feet
m* square meters 1.195

‘ha
square yards

hectares 2.47 acres
km* square kilometers 0.366 square miles

“C “C

lx
ccUm*

IX
cd/m*

SI is the symbol for the International System of Units. Appropriate (Revised September 1993)
rounding should be made to comply with Section 4 of ASTM E380.

APPROXIMATE CONVERSIONS FROM SI UNITS
Symbol When You Know Multiply By To Flnd Symbol

m
m
km

millimeters
meters
meters
kilometers

LENGTH
0.039
3.28
1.09
0.621

AREA

inches in
feet ft
yards Yd
miles mi

grams 0.035 ounces 02

kilograms 2.202 pounds lb

in*
fP
Y@
ac
mi*

megagrams 1.103 short tons (2000 lb) T
(or “metric ton”)

TEMPERATURE (exact)

Celcius
temperature

1.8C+32 Fahrenheit “F
temperature

ILLUMINATION

lux 0.0929 foot-candles fc
candela/m* 0.2919 foot-Lamberts ft

FORCE and PRESSURE or STRESS

poundforce
poundforce per
square inch

Ibf
Ibf/in’

5.1.3 Wilson-8 Method . . ‘. 124

5.2 Energy Evaluation . 133

5.2.1 Strain Energy , 133

5.2.2 Energy Balance Calculations 150 ‘

6 Analytical Studies for Base Isolation of Bridges

6.1 Introduction to Base Isolation 155

6.2 Lead-Rubber Bearings 156

6.2.1 Material Properties . 157

6.2.2 Lead-Rubber Isolator Modeling in ALADDIN 158

6.3 Modeling of Isolated Bridges . 160

6.4 Analysis Methods . 160

6.5 Combination of Isolator and Support Properties 163

6.6 Example of Nonlinear Time History Bridge Analysis 163

t

. 7 Conclusions and Future Work
B

183
t

7.1 Conclusions . 183 L

7.2 Future Work . 185

7.2.1 Engineering Side . 185

7.2.2 Software Side . 187

A Fiber Elements in ALADDIN 191

A.1 Two-Dimensional Fiber Elements 192

A.l.l 2D Fiber Element with Homogeneous Shear Properties . . 192

A.1.2 2D Fiber Element with Different Shear Properties 195

A.2 Three-Dimensional Fiber Elements 195

A.2.1 3D Fiber Element with Homogeneous Shear Properties . . 195

A.2.2 3D Fiber Element with Different Shear Properties 198

Bibliography 201

i

LIST OF FIGURES
i

1.1

1.2

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

Modeling, Analysis, and Design of Highway Bridge Structures . . 6

Economics of Software Development and Integration 11

High-Level Architecture for ALADDIN 20
P

Interaction of Language and Underlying Model 22

Branching and Looping Constructs in ALADDIN , . 26
:.

Schematic of Functions in ALADDIN , . 27

Architecture of Program Modules 31

Parser Trees for x = 2 in and y = 5 in + x 36

Data Structures in ALADDIN’s Stack Machine 38
b‘

Step 1 - Push Unit onto Stack 39

Step 2 - Push Number onto Stack , 40

2.10 Step 3 - Combine Number and Unit into Quantity 40

2.11 Primary Base and Derived Units in Structural Analysis 43

2.12 Matrix with Units Buffers 47

2.13 Units Buffer Addition/Subtraction of Two Matrices 49

2.14 Units Buffer Multiplication of Two Matrices 49

3.1 Line of Nodal Coordinates and Beam Finite Elements 52

3.2 Strategies for Solving [A] {z} = {b) 57

3.3 Plan and Front Elevation of Bridge 59

3.4 Cross Section of Bridge 59

3.5 Plan of Finite Element Mesh for Bridge 60

3.6 Cross Section of Finite Element Mesh for Bridge 60

3.7 Contour Plot of Bridge Deck Deflections 63

Vii

3.8 Three-Dimensional Mesh of Bridge Deck Deflections 63

3.9 Plan and Front Elevation of Bridge with Moving Live Load . . , . 64

3.10 Cross Section of Bridge with Moving Live Load 64

3.11 Influence Line of Displacement in the Middle of One Span for the

First Girder Subjected to 1000 kips Moving Live Load 66

3.12 Influence Line of Displacement in the Middle of One Span for the

Second Girder 67

3.13 Plan of Highway Bridge 68

3.14 Typical Cross Section 69

3.15 Elevation of Beam 69

3.16 Section Properties (n = 10) 69

3.17 Moment Diagram of Dead Load and Truck Load 73

3.18 Influence Line of Moment at Mid-Span 73

3.19 Influence Line of Shear at End Support 74

4.1 Lai’s Model for Inelastic Element 75

4.2 Fiber Element Model 78

4.3 Stress-Strain Relationship for Fiber Element 79

4.4 Generalized Forces and Deformations at Element and Section Level 81

4.5 Newton-Raphson Solution Procedure 85

4.6 Composite Bar under Axial Load 92

4.7 Axial Load. 92

4.8 Force-Deformation History of Material Softening Element 95

4.9 Force-Deformation History of Elastic Element 95

4.10 Force-Deformation History of Composite Bar 96

4.11 Cantilever Beam Subjected to Incremental Tip Load 99

viii

4.12 Element Mesh of Cantilever Beam 99

4.13 Tip Deflection Response . 104

4.14 Tip Rotation Response . 104

4.15 Nodal Deflection Along the Cantilever Beam . . . , 105

4.16 Element Curvature Along the Cantilever Beam 105’

5.1 Schematic of Shear Building . 112

5.2 Externally Applied Force (kN) Versus Time (set) 112

5.3 Mode Shapes and Natural Periods for Shear Building 113

5.4 Modal Analysis : First Mode Displacement of Roof (cm) Versus

6

Time (set) .117

5.5 Modal Analysis : Second Mode Displacement of Roof (cm) Versus

Time (set) . . . , . 117

5.6 Modal Analysis : First + Second Mode Displacement of Roof

(cm) Versus Time (set) . 118

5.7 Numerical Integration Using Average Acceleration Method 119

5.8 Newmark Integration : Lateral Displacement of Roof (cm) Versus

Time (set) . , 123

5.9 Linear Acceleration Assumption of Wilson-6 Method 124

5.10 Three-Dimensional Two-Story Lumped Mass Pier 125

5.11 Element Mesh of Two-Story Lumped Mass Pier 125

5.12 1940 El Centro Earthquake Record 127

5.13 Global DOF for Two-Story Lumped Pier 128

5.14 Earthquake Response for Two-Story Pier in x Direction , 132

5.15 Earthquake Response for Two-Story Pier in y Direction 132

5.16 Prismatic Bar Subjected to a Statically Applied Load 133

ix

5.17 Elastic and Inelastic Strain Energy 134

5.18 Nonlinear SDOF Spring System 136

5.19 Varying Load Applied on Spring System 136

5.20 Load-Deflection Diagram of Spring 1 140

5.21 Load-Deflection Diagram of Spring 2 140

5.22 Load-Deflection Diagram of System 141

5.23 Strain Energy Plot of Spring 1 141

5.24 Strain Energy Plot of Spring 2 142

5.25 Strain Energy Plot of System (Static) 142

5.26 Change of Dynamic Natural Period 1 148

5.27 Change of Dynamic Natural Period 2 . ; 148

5.28 Strain Energy Plot of System (Dynamic) 149

5.29 Comparison of Total Elongations of Static and Dynamic System . 149

5.30 Internal Energy Time History for TwoStory Pier 154

5.31 Total Energy Time History for Two-Story Pier 154

6.1 Lead-Rubber Laminated Bearing 157

6.2 Effects of Geometrical Variations of the Lead Plug and Rubber

Bearing on the Overall Response 158

6.3 Modeling of Lead-Rubber Isolator 159

6.4 Force-Displacement Hysteresis Loops for Lead-Rubber Isolator . . 159

6.5 Lateral Direction Mode Shapes 164

6.6 1940 El Centro SOOE Record : 164

6.7 Elevation Plan of Isolated Bridge 165

6.8 Finite Element Mesh of Isolated Bridge 165

6.9 Pier and Deck Section Properties 166

X ,

6.10 First Mode of Non-Isolated Bridge, Tl = 0.71 set 168

6.11 Second Mode of Non-Isolated Bridge, T2 = 0.57 set 168

6.12 First Mode of Isolated Bridge, Tl = 2.02 set 169

6.13 Second Mode of Isolated Bridge, T2 = 1.97 set 169

6.14 Definition of Structure Ductility 172

6.15 Deck Displacement of Non-Isolated Bridge 175

6.16 Deck Displacement of Isolated Bridge 175

6.17 Bottom Shear of Non-Isolated Bridge 176

6.18 Bottom Shear of Isolated Bridge 176

6.19 Deck Displacement Comparison at Pier 4 of Bridges 177

6.20 Bottom Shear Force Comparison at Pier 3 of Bridges 177

6.21 Force-Displacement Response of Isolators at Abutment 1,5 178

6.22 Force-Displacement Response of Isolator at Pier 2 178

6.23 Force-Displacement Response of Isolator at Pier 3 179

6.24 Force-Displacement Response of Isolator at Pier 4 179

6.25 Energy History of Non-Isolated Bridge 180

6.26 Energy History of Isolated Bridge 180

6.27 Energy History Comparison of Non-Isolated Bridge and Isolated

Bridge 181

6.28 Elastic and Plastic Strain Energy of Isolators 181

6.29 Strain Energy History of Isolated Bridge 182

6.30 Strain Energy History Comparison of Deck + Piers 182

7.1 Relationship of ALADDIN and JAVA interface 188

7.2 Future Input File for ALADDIN 189

A.1 Schematic of Two-Dimensional Fiber Beam/Column Element . . . 192

xi

i

A.2 Example of Two-Dimensional Fiber Element Modeling 193

A.3 Schematic of Three-Dimensional Fiber Beam/Column Element . . 196

A.4 Example of Three-Dimensional Fiber Element Modeling. 197

xii

1.1

2.1

2.2

6.1

6.2

E
1
i:

1,
[

E

LIST OF TABLES L

.;

Seismic Analysis Software for Highway Bridges 8

Summary of Logical and Relational Operators 25

Physical Units in Arithmetic Operation , 46

Pier and Isolator Capacities . 166

Ductility of Pier-Isolator System 172

t

I
CHAPTER 1 i

Introduction

1.1 Computational Technology for Structural Engineering : f i-

The primary function of any building or highway bridge structure is support

and transfer of externally applied loads to the reaction points in a safe and

reliable manner. In present-day structural design, new structures are often i i
designed initially on the basis of experience with similar types of structures,

perhaps using some simple analytical calculation procedures. Subsequent

versions of the design are progressively detailed and are analyzed using

numerical methods having a sophistication consistent with the fidelity of
i

required performance assessment. The structural design process continues in

an iterative manner until a satisfactory cost-effective solution is obtained.c3@

Structural analysis procedures are concerned with the quantitative assessment r
of structural performance under prescribed loading and displacement

conditions. External design loadings and displacement conditions can be static

or dynamic - it is defined that a load is dynamic when its time-varying
i

characteristics have a significant effect on the structural response. The dynamic

load of greatest importance in this study will be that produced by moderate

and severe earthquake ground motions. Commonly assessed response quantities

include distributions of stress, displacement, structural strength, and ductility

demand ratios. Distributions of stress and displacement give the designer a

good sense of how the structure will behave under the service load conditions.

Distributions of strength and ductility demand ratios give the designer a good

1 : b
I

sense of how individual structural components and the overall structural

system will behave under extreme loading conditions. For each of these loading

cases, the computed response quantities provide a basis for assessing how well

the structural actions can be supported by the structure.f36y52)

During the early 196Os, soon after high-level programming languages were

introduced, engineers envisioned the need for computational problem-solving

environments that would be powerful enough to solve a target class of

application problems and interact with human users.(ls) When this vision is

interpreted in the context of design and analysis of building and highway

bridge structures, computational support is needed for:

1. The construction of mathematical models of the phenomenon under

study.

2. The selection of relevant physics (e.g., constitutive models) and

structural geometry.

3. The manipulation of equations and associated conditions, thereby

allowing suitable simplified solution methods.

4. The automated construction of test problems and data sets.

5. The specification of appropriate programming languages and

problem-solving methods (perhaps from scratch or by modifying existing

materials).

6. The application of the program to the test data and validation of results.

7. The assessment of structural performance, including the collection and

2

manipulation of data generated by the structural analyses, and

comparison of this information with design code regulations.

8. The communication of results to the scientific community.

Where appropriate, models should account for natural variations in material

properties, uncertainties in loading conditions, and inaccuracies in simplified

modeling techniques.

Of course new methods are more likely to be accepted if they complement and

extend time-tested traditional procedures. In this respect, the author notes

that in traditional approaches to problem solving, engineers write the details of

a problem and its solution on paper. They use physical units to add clarity to

the problem description and may specify step-by-step details for a numerical

solution to the problem. Matrices and linear matrix algebra are an essential

part of present day structural analysis because they enable problems and their

solutions to be specified at a relatively high level of abstraction, and because

linear matrix operations are ideally suited for automatic computation on

computers. Similarly, the finite element method is an integral part of modern -
structural analyses. This method is based on the concept that a complex

system ‘can be modeled by an assembly discrete “elements” whose behavior is

readily known. A complete solution is obtained by combining the element-level
i

displacement or stress distributions in a manner that satisfies the

force-equilibrium and displacement compatibility conditions for each “node” or

connecting point of the elements. (52) By harnessing computer power for

step-by-step solutions to sophisticated matrix and finite element problems,

engineers can approach these calculations without recourse to simplifying

assumptions. Units, physical quantities, matrices, and finite element analysis

3

are techniques fundamental to good engineering practice and should be

incorporated into new computational environments.

Even though opportunity for these advances was identified in the 1960s the

primitive state of computing at that time (measured by today’s standards)

made the implementation of a suitable environment formidable. During the

past 20 years, however, remarkable advances in computer hardware and

software have enabled the development of engineering software tools to mature

to the point where importance is placed on ease of use and a wide-array of

practical services being made available (i.e., the best computer programs can

solve a wide variety of problems) to the engineering profession as a whole.

Computer programs written for engineering computations are expected to be

fast and accurate, flexible, reliable, checkable, and of course, easy to use.(21)

Whereas an engineer in the 1970s might have been satisfied by a computer

program that provided numerical solutions to a very specific engineering

problem, the same engineer today might require the engineering analysis plus

computational support for design code checking, optimization, interactive

computer graphics, network connectivity, and so forth. Many of the latter

features are not a bottleneck for getting the job done. Bather, features such as

interactive computer graphics simply make the job of describing a problem and

interpreting results easier. The pathway from ease of use to productivity gains

is well defined.@)

1.2 Modeling and Analysis of Highway Bridge Structures

During the past three decades, most of the advances in computer-aided

modeling and analysis of building and highway bridge structures can be traced

4

I

/

,

back in part to advances in digital computing.(11~36~4g) A model is a tool that

facilitates the mathematical formulation of the geometry and behavior

characteristics of a prototype system. Structural modeling techniques typically

assume that the “behavior of the real-world structure” can be captured by

suitable assemblies of discrete mathematical elements. Various levels of

i
;.

I

I
discretization are possible, ranging from very simple spring-mass systems to ,

three-dimensional finite element models that capture nonlinear geometric and

material behavior.

To facilitate the design of complex seismic resistant structural systems, recent

design codes prescribe a series of standard performance levels for seismically

resistant structures. A performance level is a limiting state of acceptable

;

damage for the main structural system, the structure’s contents, nonstructural

components and utilities. Performance levels are selected based on the safety,

economic, and societal impacts of damage. The goal of performance-based

engineering is to define performance objectives for structures of various uses

and to control the risk associated with each limit-state to a pm-defined level of

F.

Analytical procedures are needed for the assessment of structural behavior in a

manner consistent with expected behavior. Under moderate earthquake

loadings, for example, a structure should suffer no structural damage. Limited

nonstructural damage is permitted, however. Since a structure is expected to

remain essentially elastic, a linear time-history analysis or modal analysis is

e

appropriate. Severe ground shaking is assumed to correspond to the maximum

credible ground motion for the site. The important performance criterion in

events of this type is assuring that loss of life does not occur. Extensive

HIGHWAY BRIDGE STRUCTURE

Modeling
Objective

Seismic Demand Available Capacity

Modeling
Basis

, Approach Global Model

JI

Component Model

-- Static Elastic Analysis if
Analysis -- Linear Dynamic/ Modal Analysis

-- Linear Elastic Time-History Analysis -- Validation of Nonlinear Behavior
Procedure

-- Nonlinear Time-History Analysis
Feedback.. > I-------- -- Optimization

I
I I r Fs?ziik _ _ a Active Control
I 1
I 1
I I 4 t I- - - - - - -
: Design and -- Member Forces
: Analysis -- Member displacements
; Results -- Ductility Demands

v
-- Deformation Capacity of Components

T -- Elastic Capacity of Members
! -- Energy-dissipation Capacities
I

; --_--------------------------
Feedback Design Rule Checking

Figure 1.1: Modeling, Analysis, and Design of Highway Bridge Structures

structural damage in the form of large plastic deformations is acceptable.

While the level of damage may be beyond repair, collapse is nonetheless

prohibited. Analytical procedures should capture the nonlinear behavior of

systems under these loading conditions.

Figure 1.1 is adapted from the text of Priestley et al.@j) and summarizes the

objectives, approaches, and analytical procedures commonly used for modeling

and analyzing seismically resistant highway bridge structures. A prerequisite to

the formulation of appropriate models and analysis techniques is an

understanding of structural dynamics. The latter includes equations of motion

(i.e., governing differential equations), bridge dynamic response characteristics

6

(i.e., eigenvalue and eigenvector calculations) and numerical solution

procedures for governing differential equations. (12~14) A good analysis tool will

provide information on (1) the overall seismic bridge design process; (2) the

dynamic response of bridge structures under earthquake loads; (3) the

consequences of inaccuracies in modeling assumptions; and (4) the available

techniques of modeling and analysis.(35)

1.3 Literature Review

Computer-aided structural analysis tools are now an accepted part of standard

structural engineering practice because they help engineers unravel the basic

phenomena of real world structural behavior. They contain many of the

characteristics of general purpose problem-solving environments, as well as

application-specific techniques that cannot easily be used in other applications

(e.g., Mathematics and MATLAB(48)).(18) E ar y 1 versions of structural analysis

and finite element computer programs such as ABAQUS(3), ANSR(30), and

t
P

b

f

i

r
FEAP(53) were written in the FORTRAN computer language and were

developed with the goal of optimizing numerical and/or instructional

considerations alone. These programs offered a restricted, but well

implemented, set of numerical procedures for static structural analyses and

linear/nonlinear time-history response calculations. Table 1.1 contains a

summary of software packages for the seismic analysis of highway bridge

structures. Most of them can be found on the National Information Service for

Earthquake Engineering (NISEE) web server.(15)

Although present-day software packages have increased their capacity to solve

engineering problems, and handle input/output in a graphical manner, some

i

Table 1.1: Seismic Analysis Software for Highway Bridges

Software
ANSR

MicroSARB

SEISAB

NEABS

ISADAB

CALANSR

ASPIDEA

Developer
D. P. Mondkar and
G. H. Powell(30)
D. Orie, M. Saiidi and
B. Douglas(33)

imbsen & Associates,
Inc.

J. Penzien, R. Imbsen,
and W. D. Liu(341
M. Saiidi, R. Lawver,
and J. Hart(381
Pmb Engineering, Inc.

R. Giannini,
G. Monti, G. Nuti, and
T. Pagnoni(20)

Description
ANSR is a general purpose computer program for
static and dynamic analysis of nonlinear structures.

This program implements procedure 1 of the Applied
Technology Council (ATC-6) seismic design guide-
lines for straight regular highway bridges. The ATC-6
procedure 1 employs the Single Mode Spectral Anal-
ysis Method (SMSM) for seismic analysis of “regular”

highway bridges.
SEISAB is a computer program developed specifically
for use in designing new structures or for evaluating
existing structures to determine retrofit requirements.
The program’s capabilities include the analysis pro-
cedures specified in the current AASHTO Standard
Specifications for Highway Bridges and the AASHTO
Standard Specifications for Seismic Design of High-
way Bridges.
NEABS performs nonlinear dynamic analysis of long,
multiple span bridge systems.

ISADAB was developed for the transverse inelastic
analysis of reinforced concrete highway bridges.

CALANSR is a general purpose structural analysis
program specifically developed for fully-coupled, non-
linear seismic analysis. The program can assess ulti-
mate system capacity through “pushover” analyses
using specified loading or deformation patterns.

ASPIDEA (A Program for Nonlinear Analysis of Iso-
lated Bridges Under Non-synchronous Seismic Ac-
tion) is a nonlinear dynamic program specifically de-
veloped for the analysis of isolated bridges, using a
number of generated accelerograms.

8

. . . .

problems still remain. For example, physical units are not part of the program a E
infrastructure. Most engineering analysis packages simply assume that an

engineer will check that units are applied in a consistent manner. The few

computer programs that do incorporate physical units handle them at either

the program input and output stage (i.e., the input and output will be
Y

presented and displayed in a certain set of units) or at the physical quantity

level (e.g., x = 2 in). In practical engineering analysis, however, units can be as

important as the numerical quantity itself. No computer program has been

found to be able to systematically integrate units into the definition of physical

quantities, matrices, and finite element analysis.

Readability of input files is another problem for many matrix and finite

element software packages. Frequently the format specifications for input files

in engineering packages are so cryptic that it is impossible to understand the t p
purpose of the engineering problem - the latter requires a careful reading of

the program’s user manual. t
While these limitations may have been acceptable 20 years ago, the advent of

modern software engineering tools means that today we can do a much better

job! For example, many of these problems can be mitigated by moving the

balance of software development from “compiled programs” to programs that

are both “compiled” and “interpreted.” Ease-of-use and increased flexibility in

problem solving and program portability are the main reasons for moving

towards interpreted languages - MATLAB and Java are two good examples of i
languages that have these features. While programming languages like

MATLAB, MathCad, and Mathematics support matrix operations, physical

units are not incorporated into all computations, and the extension of these

9

environments to finite element computations is non trivial.

Economics and Difficulty of Software Development: The difficulty in

following up on the above mentioned hardware advances with appropriate

software developments is clearly reflected in the economic costs of project

development. In the early 19’70s software consumed approximately 25 percent

of the total costs, and hardware 75 percent of the total costs for development

of data intensive systems. Nowadays, development and maintenance of

software typically consumes more than 80 percent of the total project costs.

This change in economics is the combined result of falling hardware costs and

increased software development budgets needed to implement systems that are

much more complex than they used to be. See figure 1.2.

Whereas one or two programmers might have written a complete program 20

years ago, today’s problems are so complex that teams of programmers are

needed to understand a problem and fill in the details of required development.

When a computer program has a poorly designed architecture, its integration

with another package can be very difficult, with the result often falling short of

users’ expectations. Let us suppose, for example, that someone wanted to

interface the finite element package FEAPcsa) with the interactive

optimization-based design environment called DELIGHT.(gp32~51) Since FEAP

was not written with interfaces to external environments as a design criterion,

a programmer(s) faced with this task would first need to figure out how FEAP

and DELIGHT work (not an easy task) and then devise a mapping from

DELIGHT’s external interface routines to FEAP’s subroutines. The

programmer(s) would need the computer skills and tenacity to stick with the

lengthy period of code development that would ensue. And what about the

10

ECONOMICS OF COMPUTlNG I SYSTEMS DEVELOPMENT

H = Hardware s = Software

S 1 H

System Integration

I I

TASK - ORIENTED PROGRAMS I MODULES

CENTRALIZED OPERATIONS

I

I
I
k

INTEGRATED SYSTEMS I SERVICES
L
b

DISTRIBUTED OPERATlONS

1970’s and early 1980’s 1990’S

Figure 1.2: Economics of Software Development and Integration

result? In our experience, the integrated DELIGHT-FEAP tool would most

likely do a very good job of solving a narrow range of problems.(7~8~g) Simply

extending the DELIGHT-FEAP environment to account for a new set of design

rules might require an indepth knowledge of the program architecture and

computer programming. Because of these difficulties, the DELIGHT-FEAP

program would most likely have a short life cycle. These barriers to software

integration are frustrating because finite element and optimization procedures

are essentially specialized matrix computations - the disciplines should fit

together in almost a seamless way.

1.4 Research Objectives and Design Criteria for ALADDIN

This research project takes the position that the main barrier to software

integration is an ad-hoc approach to software tool development in the first

place. Rather than simply repeat the abov+mentioned “scenario procedure”

for yet another set of packages, this research project attempts to understand

the structure matrix and finite element (and optimization and control)

packages should take so that they can be integrated in a natural way. The

problem will be investigated by designing and implementing a system

specification for how a matrix and finite element system ought to work. To

verify that these ideas will in fact work, the author will use the system to study

the seismic analysis and performance assessment of highway bridge structures.

Our research direction is inspired in part by the systems integration methods

developed for the European ESPRIT Project and by the success of C.

Although the C programming language has only 32 keywords, and a handful of

control structures, its judicious combination with external libraries has resulted

in the language being used in a very wide range of applications. The system

specification will include@pT5):

1. A model: The model will include data structures for the information to

be stored and a stack machine for the execution of the matrix and finite

element algorithms.

2. A language: The language acts as an interface between the engineer

and the underlying computational model. It is a means for describing

matrices, finite element meshes, and numerical solution procedures.

3. Defined steps and ordering of the steps: The steps will define the

12

transformations that can be applied to the system components (e.g.,

nearly all engineering processes will require iteration and branching).

4. Guidance for applying the specification: Guidance includes factors

such as easy-tounderstand problem description files, documentation, and

example problems. The last two components have been implemented on

the ALADDIN web site.

Using grammatical rules and compiler construction tools based on the work of

linguist Niam Chomsky, design and analysis concepts are translated into

mathematical and computational models. Working out the details of language L

translation requires a combination of design and artistic skills; the new

environment’s language should be textually descriptive and strike a balance

between simplicity and extensibility. It should use a small number of data
i

types and control structures, incorporate physical units, and yet be descriptive

enough so that the pencil and paper and problem description files are

almost the same. A key advantage in designing a software environment around

a well defined language is that underlying software components must be :

modular for the system to work.

The ALADDIN language has a grammar, syntax, and semantics meaningful to

the structural analysis and design problem solving domain. ALADDIN symbols

can represent physical quantities, matrices of physical quantities, components

of finite element meshes, and components of numerical solution procedures.

The fundamental branching constructs are if and if. . then. . else, and the

looping control constructs are while O- and for 0.

Blocks of design and analysis statements are parsed and converted into

low-level stack machine instructions. As you will soon see, this step is far from

trivial - the linguistic constructs and generation tools must be powerful

enough to handle both the geometrical and functional aspects of structural

analysis/design, and yet, precise so that high-level ALADDIN statements can

be efficiently mapped to stack machine instructions without ambiguity.

1.5 Classes and Needs of ALADDIN Users

ALADDIN is designed for three groups of people:

1. Graduate students in structural engineering: A graduate student

might use ALADDIN to solve a structural analysis or finite element

problem as part of his or her classwork. Some graduate students will use

ALADDIN as a framework for implementing new finite elements, perhaps

as part of an advanced class in finite element analysis.

2. Researchers in structural analysis: ALADDIN provides researchers

with an environment to test out their new algorithms and finite elements,

and to freely collect the results (all without writing a whole new program

or modifying and compiling the source codes). When researchers are

developing a new numerical algorithm or solution procedure, one problem

they face is validation. As part of the validation procedure a researcher

may need to collect, for example, the time variation in plastic energy

dissipation computed during an earthquake time-history analysis.

Existing analysis programs provide neither this information nor flexibility.

Yet with ALADDIN, the required information can be collected and

processed by simply writing the appropriate statements in the input file.

14

3. Engineering practitioners: Practicing engineers can use ALADDIN

simply as a units-based calculator, or for the solution of small-scaled
*-
P

analysis problems involving matrix arithmetics, linear matrix equations,

design rule checking, and so forth.

It is expected that the people in each of these categories will already have a

good understanding of engineering analysis procedures. While they may also

be familiar with programming logic and flow charts, few of them will have the

skills of professional software developers. That is fine! They are, after all,

primarily interested in using the software as a problem-solving tool. e.. i-
From a software point of view, ALADDIN users want a computational

environment that: I

t.

1. Is easy to learn: A good way of making a new programming language

easy to learn is to deliberately make its syntaxclose to the languages

with which engineers will already be familiar. Most engineers are familiar

with one or more high-level programming languages (e.g., FORTRAN,

BASIC, C, PASCAL). High level scripting languages such as MATLAB

are also coming into vogue in many areas of engineering. It therefore

makes good sense to design the ALADDIN language so that its syntax

i

will look like one or more of the languages engineers are already familiar.

2. Supports documentation: Engineers should be provided with the

mechanisms to document and explain problem descriptions in a flexible

manner. This strategy of development improves communication among

members of a design team.

3. Incorporates physical units: Engineers should be provided with the

freedom to use a variety of units in their engineering computations. In

this respect, the ALADDIN environment should verify that the units are

consistent before proceeding with an arithmetic or matrix operation.

4. Supports matrix operations: Since matrix operations are the basic

operations for all structural engineering problems, their operation should

work automatically in a program. For example, if A and B are previously

defined matrices, matrix addition should proceed by simply writing

A+B.

5. Supports finite element analysis: As already stated, finite element

analysis is the main analysis method used in structural analysis. It

should include basic elements for framed structures and some special

elements for special modeling. The finite element program should be

capable of dealing with both static and dynamic analysis, in a linear or

nonlinear regime.

6. Supports Custom Problem-Solving Procedures : Engineers should

be provided with the tools to write custom problem-solving procedures in

the ALADDIN language alone. A knowledge of ALADDIN’s inner

working should not be required.

And from an engineering point of view, ALADDIN should provide its users

with support for:

1. Modeling of bridge systems at multiple levels of fidelity: For

example, a engineer may need to model the nonlinear hysteretic

16

2.

3.

4.

5. Different numerical solution procedures for engineering

properties of a base isolation component using a detailed nonlinear finite

element analysis. The same engineer may also need to model an entire

highway bridge system. In this second case, some components of the

bridge system will be assumed to remain linear elastic, with nonlinear

behavior being confined to specific elements in the bridge. This problem

solving strategy provides reasonably realistic estimates of nonlinear

system behavior without having to work with matrix equations that are

unnecessarily large.

Different types of prescribed load: Including static dead and live

loads, moving live loads, earthquake ground motion accelerograms and

response spectra analysis.

Numerical algorithms: They are reliable for structural analyses (i.e.,

they won’t fail to converge midway through a lengthy nonlinear analysis).

Validation of the structural analysis results: This can take the I

! form of design code checking, or perhaps energy evaluation in a

static/dynamic nonlinear history analysis.

analysis: Such as Newmark method, Wilson-6 method,
c

Mode-Superposition method, Newton-Raphson method, etc.

All of these features should work within a single integrated computational

environment.

17

1.6 Report Outline

Chapter 2 contains a detailed description of the architecture and design for

ALADDIN, with examples explaining what the input looks like and how the

implementation works. Chapter 3 shows how static linear finite element

problems can be solved with ALADDIN, and walks through a number of

examples that incorporate structural analysis solution procedures. Chapter 4

introduces a special flexibility-based fiber beam-column element originally

proposed by Filippou et al.. (46) Its implementation in ALADDIN is also

described. Chapter 5 shows solution procedures for dynamic nonlinear finite

element analysis with ALADDIN, and introduces the study of strain energy

calculations. Chapter 6 has an analytical study for the base isolation of

bridges, and covers the lead-rubber isolator and modeling and analysis of

isolated bridges. Finally, chapter 7 contains the conclusions of this work and

suggestions for future research.

18

CHAPTER 2

Architecture and Design of ALADDIN

2.1 Introduction to ALADDIN

ALADDIN is a computational toolkit for the interactive matrix and finite

element analysis of large engineering structures. In ALADDIN finite element

computations are viewed as a specialized form of matrix computations, matrices

are viewed as rectangular arrays of physical quantities, and numbers are viewed

as dimensionless physical quantities. ALADDIN provides engineers with:

1. Mechanisms to define physical quantities with units, and matrices of

physical quantities.

2. Facilities for physical quantity and matrix arithmetic.

3. A SI and US units package. Conversion of units may be applied to

physical quantity constants, physical quantity variables, and matrices of

physical quantities.

4. A matrix package. Its capabilities include matrix arithmetic, solution of

linear matrix equations, and the general symmetric eigenvalue problem.

5. Programming constructs to control the solution procedure (i.e., branching

and looping) in matrix and finite element problems.

6. A finite element mesh generation package. Two- and three-dimensional

finite element meshes can be created.

7. A library of finite elements. Currently, the finite element library includes

elements for plane stress/plane strain analysis, two-dimensional and three-

dimensional beamkolumn analysis, three dimensional truss analysis,

plate analysis, and a variety of shell finite elements.

The target application area for ALADDIN is static and dynamic finite element

analysis of multi-story buildings and highwa,y bridge structures. The seismic

analysis of structures because of earthquake loads is of particular interest.

2.2 Architecture of the ALADDIN Environment

--me -------------_-----.
I ,
:Gc;uMTEFD;m~ :

FINK EE&~EYC LIBRARY

8 t
: MESH I

I c-----_--_---------------~ ------------------------- \)
I ,

: SRU’IEGY I ALC-iom FOR :
\ /

I I I I

SYSEMS WTEGRA~OX sYsxEm cowoNEms

- Design of Language Syntaxad Sytnantks for - Daign of &a suucutres and Jgailhms for

intqralion of system coqarnu moduie Iii.

- HundmlsI’Ibaurodr ofl~insallcIicms : knpicmetlmd in c. S-10 low-ilwl inluucdalr

per ALADDIN soremQlL perslamlKntofC-c*.

Figure 2.1: High-Level Architecture for ALADDIN

Figure 2.1 is a schematic of the ALADDIN architecture and shows its three

20

main parts: (1) the input file(s); (2) the kernel; and (3) libraries of matrix and

finite element functions.

The main challenge in designing the kernel and input file is in finding a

language syntax and semantics that will enable a number of disciplines

involved in a problem-solving procedure to be integrated in a seamless manner.

To be useful to engineers, the problem description language should be

reasonably high level and yet precise, perhaps resulting in hundreds/thousands

of low-level native machine instructions per ALADDIN statement. The second

part of the program’s architecture design is concerned with the system

components - on this side of the problem, the main challenge lies in the

b

design of data structures and algorithms for the underlying matrix and finite

element operations that are computationally efficient. As already pointed out

in chapter 1, a successful implementation requires a seamless integration of

library components with the kernel and language designs. This necessitates a

component-language-test software development cycle. New component modules

associated language features must be throughly tested before they are included

in an ALADDIN release (verifying that new program components work

i

properly can be an extremely time consuming process).

Figure 2.2 is a second high-level view of the ALADDIN system that emphasizes

the relationship between an engineer/user and the ALADDIN language,

components of the ALADDIN kernel, and their communication with functions

in the matrix and finite element libraries. In a typical problem-solving session,

an engineer/user will write blocks of ALADDIN language statements in an

input file. The ALADDIN kernel parses the description statements, identifying

the names and types of input tokens and then builds up the parser tree for

21

ENGINEER I USER

USER INTERFACE ? t I
I

LANGUAGE
c I J

I

Syntax [BNF Gmmwx 1

I - ~
I I I I

* 8 I I ODEL FOR ALADDIN KERNEL ! I
I M

r

I

b Ir V V V I I
I I

Language I Stack Machine In~uface Language/ Library Intcrfacc

Stack Machiic - - ! a- ‘

MODEL FOR ENGINEERING APPLlCATlON (S) ; I
r I

Matix Library Finite Element Libmy

Figure 2.2: Interaction of Language and Underlying Model

22

further stack operations.

To ensure that the tokens are available for further processing, the language

parser stores them in a hash (a symbol) table. Stack machines are suitable for

modeling systems that have a finite number of internal configurations or states,

and whose behavior evolves as a linear sequence of discrete points in time. It

also constructs an ensemble of low-level stack machine operations (we will
E

illustrate these details in a moment). The stack machine then calls and

executes functions in the stack instructions. The functions include matrix and

finite element libraries in lowest level of program. Results are then passed back

to the user after the function calls are complete.

2.2.1 Problem Description Statements in Input File

Specific engineering problems are defined in ALADDIN problem description

files, and solved using components of ALADDIN that are part

interpreter-based and part compiled C code. It is important to keep in mind

that as the speed of CPU processors increases, the time needed to prepare a

problem description increases relative to the total time needed to work through

an engineering analysis. Hence, clarity of an input file’s contents is of

paramount importance. In the design of the ALADDIN language, the authors

attempted to achieve these goals with:

1. Liberal use of comment statements (as with the C programming

language, comments are inserted between /* */);

”
k

*
i.
p
i

c

2. Consistent use of function names and function arguments;

3. Use of physical units in the problem description; and

4. Consistent use of variables, matrices, and structures to control the flow of

program logic.

ALADDIN problem description statements and their solution algorithms are a

composition of three elements: (1) data; (2) control; and (3) functions.(3g)

1. Data : ALADDIN supports three data types: “character string” for

variable names, physical quantities, and matrices of physical quantities

for engineering data. For example, the statement

x = 3 cmhec;

defines a variable called 5” to represent a velocity of 3 cm per second.

Notice how 3 juxtaposed with cm/set implies multiplication; we have

hard-coded this interpretation into the ALADDIN language because 3

cm/set is more customary and easier to read than 3 * cm/set. There

are no integer data types in ALADDIN. Floating point numbers are

stored with double precision accuracy and are viewed as physical

quantities without units. Matrices of physical quantities are a direct

extension of this feature. For example, the statement

Y = [0 m, I m, 2 radl;

defines a (1 x 3) matrix of displacements. Matrix elements ~111 [ll and

yCl1 121 have units of length, and yC11 [31 has a planer angle rotation.

Of course, physical quantities can be used in arithmetic calculations,

logical, and relational operations. For example, let

x=3cm;
Y = 5 cm;
2=7cm;

24

Table 2.1 serves two purposes. First, it summarizes the logical and

relational operators that can be applied to physical quantities. It also

demonstrates the application of those operators and their computed

results.

Table 2.1: Summary of Logical and Relational Operators

Operator Description Expression Result i-
;

< less than X<Y true 1
> greater than =>Y false

;
r

<= less than or equal to x <= y true ;.
;

>= greater than or equal to x >= y false
== identically equal to x == Y false
I- .- not equal to x !=y true
8585 logical and (xcy> &8c (x<z> true
II logical or (y>x) I I (y>z) true I

i

2. Control : Control is the basic mechanism in a programming language

for using the outcome of logical and relational expressions to guide the

pathway of a program execution.

ALADDIN supports the branching constructs of if and if-then-else,

and the while and for looping constructs, with logical and relational

operations being computed on physical quantities. A schematic of

branching and looping constructs is shown in figure 2.3. Branching and

looping constructs have one entry and one exit. For example, the for-loop

has the following syntax:

c
P

25 \
r

ENTRY ENTRY FALSE EXIT

TRUE

BRANCHING CONSTRUCTS LOOPING CONSTRUCTS

Figure 2.3: Branching and Looping Constructs in ALADDIN

Syntax Example

for(initializer;condition;increment)(for(x=lm; x<=5m; x=x+2m)(
statements; print "x ='I, x, "\n";

1 1

The example generates the output:

Loop No. x x <= 5 m Output
1 lm true x=lm
2 3m true x = 3 m
3 ‘5m true x=5m
4 7m false

The initializer, condition, and increment statements can be zero or

more statements separated by a comma. Similarly, zero or more

statements may be located in the for-loop body. You should notice that

all of the elements in the for-loop statement are dimensionally consistent.

Execution of the for-loop begins with the initializer statement (i.e., we

assign 1 m to variable x). The condition statement is then evaluated to

see if it is true or false. In this particular example, x <= 5m evaluates to

true and so statements inside the body of the loop are executed (i.e., we

26

I

:y.

print out the value of x). When all of the statements inside the for-loop

body have finished executing, the increment statement is executed (i.e.,

we increase the value of x by 2m) and condition is reevaluated to see if

P

another loop of computations is required. For this example, the loop
a

cycles continue for four iterations, until the condition evaluates to false.

At the end of the for-loop execution, the value of x will be 7 m.

3. F’unctions : The functional components of ALADDIN provide hierarchy

to the solution of our matrix and finite element solution procedures, and

are located in libraries of compiled C codes, as shown on the right-hand

side of figure 2.1.

Input z FUNCTION - output i

I
RETURN TYPE = AXON NAME

1
(

I
Arg 1 , Arg 2 , , kg N);
I I

output Input

Figure 2.4: Schematic of Functions in ALADDIN

Figure 2.4 shows the general components of a function call, including the

input argument list, the function name, and return type. Version 1.0 of

ALADDIN has functional support for basic matrix and finite element

operations. For example, the function call

spectra = Matrix ([20,2lZ;

c

P-

calls the function Matrix to dynamically allocate memory for a 20 by 2

matrix of physical quantities, and assigns the result to a variable

spectra. The ALADDIN function Matrix accepts one matrix argument

as its input, and returns one matrix as the result.

A key strategy we have followed in ALADDIN’s development is to keep

the number and type of arguments employed in library function calls

small. Whenever possible, the function’s return type and arguments

should be of the same data type, thereby allowing the output from one or

more functions to act as the input to following function call. More

precisely, the authors would like to write an input code that takes the

form

eload = FxtemalLoadO;
stiff = StiffO;

displacement = Solve(stiff, eload 1;

If ExternalLoad and Stiff 0 belong to application area 1 (e.g., finite

element analysis), and Solve0 belongs to application area 2 (e.g.,

matrix analysis), then this language structure allows application areas 1

and 2 to be combined in a natural way.

These three components are the basic ingredients of ALADDIN

problem-solving procedures involving matrix and finite element computations.

Finite Element Input Files : Finite element problems require the

development of an input file having the following fivepart format:

START OF INPUT FILE

/* ---------_----------___I_______ -------- ---- * ---------_-----_--___________I__________-----------
* A description of the finite element problem goes here... *
* --- ------ *, ---------_----------___________I________---------

28

. . . Part Cl] : Problem specification parameters.

StartMeshO;
c

Part C2I : Generate finite element mesh. Specify section and material ;: . . .
properties, external loads, and boundary conditions.

EndMeshO;

. . . Part c31
r

: Describe solution procedure for finite element problem.
i

. . . Part 141 : If applicable, check performance of structure against I.

design rules.

. . . Part c51 : If applicable, generate arrays of output that are suitable
for plotting with MATLAB. i

quit;
1

1;

The information supplied in each part of the input file is as follows:

1. The problem specification parameters allow an engineer to state whether

a finite element problem will be two- or three- dimensional, the maximum

number of degree of freedom per node, and the maximum number of

1”

nodes per element.

2. ALADDIN statements are written for the finite element mesh generation, k
the definition of section and material properties, the specification of

external loads, boundary conditions, and for linking finite element degrees

of freedom. Mesh generation begins and ends with the function calls:

StartMesh : Allocates the working memory for the finite element data

structures.

EndMesh : Loads the information provided in part C21 into the

finite element data base.

29

3. The problem-solving procedure usually begins with the assembly of the

global stiffness matrix, external load vectors, and if applicable, assembly

of a global mass matrix. Specific linear/nonlinear static/dynamic finite

element problems are solved by inserting the details of a numerical

algorithm (e.g., Newmark integration, modal analysis, and optimization

procedures) at this point.

4. If applicable, the performance of structure is checked against rules from a

design code.

5. If applicable, arrays of formatted program output are generated for

specialized manipulations (see, for example, section 5.2 on energy

evaluation) and plotting with MATLAB.

22.2 Architecture of Program Modules

To develop a modular software, the program architecture is carefully

partitioned into six modules. Figure 2.5 shows the interfaces and relationships

among the six modules. They are (1) main module; (2) preprocessor module;

(3) central control module; (4) matrix module; (5) finite element module; and

(6) engineering units module. A summary of each module is as follows:

1. Main module: The main module acts as the entry point for program

execution. It loads information specified in ALADDIN’s header files into

the symbol table, directs the source of expected input (keyboard or files),

and details of command options. Then the main module calls the

preprocessor module and executes the program. Also during initializing

the environment, the program loads keywords, constants, finite element

30

; FINITE ELEMENT MODULE

J?EA Base Module
Memory allocation for FE data
structure
Mesh generation
Setup FEA matrices
Setup material properties
‘. .

read & scan input, run

?

Pm-Processor Language

YACC grammar Parser
Lexical analyser
Build execution instruction stack 3

Push and Pop stack

Figure 2.5: Architecture of Program Modules

I

,...--.--.-..-.._.....-.
ULTILITIES ;

analysis information, and built-in functions needed for the command

language into ALADDIN’s symbol table.

2. Preprocessor language module: ALADDIN’s preprocessor module

parses input, and prepares an array of machine instructions that will be

executed by ALADDIN’s stack machine. The design and implementation

details for the language will be described in section 2.3.

3. Central control module: The central control module is composed of a

stack machine and is the heart of ALADDIN. The design and

implementation details for the stack machine will be described later in

section 2.4.

,

4. Engineering units module: The engineering units module provides the

units operations of engineering quantities and matrices for both US and

SI systems of units. Operations for units conversion are provided, as are

facilities to turn units operations on/off. The design and, implementation

details for the physical units will be described in section 2.5.

5. Matrix module: The matrix module contains functions to allocate

memory for matrices, to compute basic matrix operations and solutions

to families of linear equations, and to solve the symmetric eigenvalue

problem.

6. Finite element module: The finite element module contains

ALADDIN’s data structures for finite element analysis, functions for

finite element analysis, and a library of finite elements. All of these

details are contained in a base module and an element library module.

The information needed for the finite element analysis is generated and

prepared by the base module. The base module also collects and

assembles results generated by the element library module. The element

library module has codes to compute element stiffness matrix, mass

matrix, internal force, and nonlinear response if applicable. These two

sub-modules transfer the data to each other through the use of working

arrays.

2.2.3 Matrix and Finite Element Libraries

ALADDIN’s built-in libraries widen the program’s problem-solving ability and

are a big part of making the ALADDIN language extensible. These libraries

are implemented as compiled C codes.

The matrix library includes functions for dynamic allocating and printing

Ld 32

matrices, transposing and inverting a matrix, substitution and extraction of

sub-matrices, linear equation solver, eigenvalue/eigenvector problem-solver,

and other miscellaneous functions. Functions are provided for addition,

subtraction, and multiplication of matrices, with or without units. For more

details, see Reference [6].

The built-in finite element library includes functions for (a) generation of finite

element meshes; (b) definition of external loads; (c) specification of boundary

conditions; (d) specification of section and material properties; and (e) linking

i 1

finite element degrees of freedom. To assist the engineer with basic finite

element computations, built-in functions are provided for the assembly of

global stiffness matrices, global mass matrices, and external load vectors. The b

finite element library also provides facilities for querying information on the

finite element mesh, section and material properties, and the computed

displacements and stresses.

Of course, the finite element library also includes a collection of finite elements. i.

The ALADDIN Version 2.0 finite elements include two-dimensional four-node

plane stress/plane strain element, two-dimensional two-node frame element,

threedimensional two-node frame element, three-dimensional four- and

eight-node shell elements with five degrees of freedom (linear/nonlinear

elastic-plastic materials), four-node flat shell element with six degrees of

freedom per node, four-node discrete Kirchoff quadrilateral (DKQ) plate

element, two- and three-dimensional two-node fiber beam/column element

(linear/bilinear elastic-plastic materials). Each finite element has a source code

to compute element stiffness and mass matrices, plus for a given displacement

vector, a vector of internal forces acting on the nodal degrees of freedom.

33

2.3 Language Design and Implementation

A key design objective for ALADDIN is the development of a program

structure that is very modular. We have captured this principle by designing

the program architecture, and supporting software modules, around a

“language grammar” and a compiler construction tool called YACC (short for

Yet Another Compiler Compiler).(22) YACC takes a language

description/grammar and automatically generates C code for a parser that will

match streams of input against the rules of the language using a lookahead left

recursive (LALR) strategy. In ALADDIN, the details of the YACC grammar

and associated C code are located in a four-part file called grammar.y. The

four parts are:

xc
Part 1: Optional C statement, declaration;

%3
part2 : YACC declarations, lexical tokens, grammar variable,

precedence and associativity information
%%

part3 : Grammar rules and semantic actions
%%

part4 : Lexical analysis with a C function called yylexo.

In part 4 of the YACC specification, there is a C function called yylex0 to

scan streams of input and identify the name and types of tokens. Black spaces,

tabs, and all input between comment statements is automatically removed

from the input. Numbers must begin with either a digit of a decimal point, and

they are temporarily stored in ALADDIN’s symbol table. Character strings are

enclosed within quotes (i.e., “ “)., V aria bl es and built-in function names are

alphanumeric strings that must begin with a character - the details of

keywords in ALADDIN’s programming language are stored in the symbol table

34

(see figure 2.2).

YACC takes the specifications in parts I to 3 of grammar.y, and generates a

C code function called yyparse0 for: (a) the matching of tokens and their

types against the grammatical rules of the language; and (b) the handling of

semantic actions.

The ALADDIN Version 2.0 language employs 134 grammatical rules for the

identification of dimensions, physical quantities, matrices, program control of

flow statements, ‘and so forth. Exact details of the grammar can be examined

by downloading the grammar.y file from the ALADDIN web site. To see how

this process works in practice, consider the problem of parsing the input

statements:

x = 2 in;
47 =- 5 in + x;

For the x = 2 in statement, the sequence of parsing operations is as follows:

1. The YACC parser recognizes that the whole input statement is a type

“stmt” with the final result of type “quantity.”

2. The parser recognizes that “quantity” (from step 1) is a combination of a

variable x with token name VAR, an assign operator =, and a quantity 2

in of type “quantity.” The grammatical rule for assignment (i.e., 11=11)

has right associativity, meaning that tokens to the right of the = will be

handled before the result is assigned to x. k.
B
*

3. The parser recognizes that 2 in is a quantity composed of a number 2

with token name NUMBER and a units dimension in of type

“dimensions.”
i

1 1
VAR VAR

I I

Figure 2.6: Parser Trees for x = 2 in and y = 5 in + x

4. The parser recognizes that in is a dimension. It has the token name

DIMENSION.

The relationship among these components and steps is summarized by the

parser tree in the upper half of figure 2.6.

For the y = 5 in + x statement the parsing sequences are basically the same

as in the preceding paragraph. The resulting parser tree is shown in the lower

half of figure 2.6. Because YACC rules are recursively defined, 5 in + x is

matched by:

quantity : quantity '+) quantity { Code(QuantityAdd);) \ , . d *
Syntactic rtble Semantic action

36

This syntactic rule basically says that if the input stream includes a quantity,

an arithmetical operator “+“, and another quantity, then the result is , F

recognized as a quantity. The appropriate semantic actions are specified

inside the braces (} following the rule. In this particular case, the C code

located inside the function Quantity-Add0 generates the appropriate

operations for the stack machine.

2.4 Stack Machine for Central Control

The data and control components of ALADDIN are implemented as a

finite-state stack machine model, which follows in the spirit of work presented

by Kernighan and Pike.(23)

The purpose of figure 2.7 is to show how the stack machine is constructed from

three connected data structures: an array of machine instructions, a program

stack, and a symbol table. Each rule in the ALADDIN grammar has a

semantic action that generates zero or more low-level stack machine

instructions. Commonly used stack machine instructions include pushing and

popping data to/from the program stack, retrieving data from the ALADDIN

hash table, calling a function in the matrix/finite element libraries, and so

forth. Each ALADDIN statement (or block of statements) generates a

sequence of semantic actions that results in the construction of an array of

stack machine instructions (see the upper left-hand corner of figure 2.7. Note P
k

that because the underlying parsing algorithm is LALR, the stack machine

array contains instructions beginning with the last rule parsed, and finishing

with the first rule identified.

In phase two of the statement processing, the stack machine walks along the

37

Each anay elemeot is a noion containing r-r pointers toQuantities and Mauices, aad

ARRAY OF MACHINE lNSI’RUClTONS I.
V

STACK DATA STRUCTURE

. z Symbol 1 -* Symbol 2 -- Symbol 3

0

in the Symbol Table

Data 2 .-- Matlix

Data 3

0

-Y--,-, 1

I
-I

I

r-----l
I I

I I

I
I

_--we-

Pointer to Material Pmpflties Double Precision Constants
- Symbol 4

Pointer to Section Propelties Character Strings

Pointer to functiom Finite Element Attributes

Pointers to Quaotities / Matrices ALADDIN Language Keywords

SYMBOL TABLE CONTENTS OF SYMBOL TABLE NODES

Figure 2.7: Data Structures in ALADDIN’s Stack Machine

array of machine instructions and executes the functions pointed to by the

machine instructions. These functions will retrieve matrices and physical

quantities from the symbol table, and push copies onto the program stack (see

the upper right-hand side of figure 2.7). The pop and push operands of the

program stack follow a last-in-first-out rule. When the stack machine has

finished executing the array of instructions, the program stack will be empty.

Example of Machine Stack Execution : We now demonstrate use of the

stack machine by working step-by-step through the details of processing the

assignment x = 2 in;. At the conclusion of the statement parsing phase, the

variable x (of undetermined data type) will have been added to the symbol

38

pc=pc+I -
Push3ime~sion() : Push “in” onto data st&.

(Inst) Push-Constant

(Ina) -
Name : “in”

(Ins) Dimension-Eval Name: “in” Type: us
(Inst) Push-Variable Type: scale : 1.0
(Inst) uvalue

(Inst) Assign-Quantity u.q->dimen *- UNITS DATA STRUC’TURE
(Inst) Pop ..,

(lost) STOP

SYMBOL TABLE NODE

ARRAY OF MACHINE E’lSTRUCnONS

dl

t Name : “in”

Type: us

QUANTITY DATA STRUCTURE scale : 1.0

UNn-S DATA STRUCTURE

I
STACK DATA STRUCKIRE

Figure 2.8: Step 1 - Push Unit onto Stack

table, and the array of machine instructions will contain the items shown on

the top left-hand side of figure 2.8. The step-by-step procedure for execution of

the stack machine is:

k. /-
i.
i”
c

1. Push symbol table pointer onto stack for the variable in.

2. Push a constant 2 onto the stack.

3. Pop both 2 and in off the stack, and combine them into a single quantity

2 in. The quantity is pushed back onto the stack.

4. Push onto the stack, the symbol table pointer to variable x.

5. Pop x and 2 in from the stack. Assign 2 in to x and push x back onto

the stack.

6. Data x is popped and cleared from the stack.

39 i

(Inn) FushDimension
~nsh-Constanr() : Push “2” onto stack

(lost)
pc- 1 - (lost) Rlsb~Constaot e

pc=pc+l - (mst) e- Symbol 2 - Name:

(1-m) DimensiooZd Type: NUMBER Type : US~Sl

(Inst) Push-Variable Type: scale : 1.0

(Ins1) u.va1ne : 2

(Ins1) AssigD~Quanlity
1

u.q->dimen *- LWTS DATA STRUCTUPJZ
SYMBOL TABLE NODE

ARRAY OF MACHINE INSTRUCTIONS

Type: US

QUANTITY DATA STRUCXJRE scale : 1.0

d2 UNlTS DATA STRUCWRE
*

PC-1
pc=pe+

STACK DATA STRU(JTURE

Figure 2.9: Step 2 - Push Number onto Stack

(lnsr) PushJimension

(Inst)

(Inst) Pushxonstmlt

(hst)
- (Inst) Dimension-Evll

I- (Inst) Push~VatiabIe

f Ins, >

e - Dimension-EvJ () : Pop 7%” and “dl” from the
suck, combine “2” and “in” intoa single quantity,

and push the results “d” onto the stwk.

I I
ARRAY OF MACHINE INSTRUCfIONS

----T-- -

L--4
J Name : “in”

dl I
r--:

d Type: US
I
r-,--I-~ QU- scale : 1.0

I
I

:::; m

DATA STRUCTURE
I d2 UNITS DATA SlXUCWRE
1

I
L---eT-J
I
I L-;

I
I .I

I r--(
-----I,-

STACK DATA S’IRUCTURE

40

Figure 2.10: Step 3 - Combine Number and Unit into Quantity

Figures 2.8 to 2.10 show the relevant details of the machine array, symbol

table, and program stack for steps 1 to 3 of the execution procedure. The

step-by-step procedure is handled by the C function Execute();

int Execute(Inst *p > (
for(pc = p; *PC != STOP; > (

PC = pc+l;
if(Check-Break0) break;
(*(*(pc-l)>)O;

1
1

pc is a program counter that points to elements in the array of machine

instructions, as shown in figures 2.8 to 2.10. The elements of the machine array

are pointers to C functions that implement the stack operation tasks. The

arrows represent the two stages of pc positions. As shown by the upper arrow

in figure 2.8, the program counter pc initially points to (Inst)

PushDimensionO. You should notice that the program counter pc is

incremented to the lower arrow position (pc = pc+l) before PushDimension is

called. Now (PC-1) points to (Inst) PushDimensionO, and the new value of i i
pc (lower arrow position) points to a quantity stored in the symbol table (i.e.,

the units dimension in of the input statement). PushDimension allocates

memory for a new quantity and assigns pc to the base address. After the unit

of the quantity has been copied to the newly allocated block, the new quantity

is pushed onto the program stack. After the function PushDimension has

completed its execution, the program counter pc is increased to point to the i
%;w

next function Push-Constant 0.

The Push-Constant 0 function extracts the value of quantity 2 from the

symbol table, stores it in a new quantity, and pushes the copy onto the

program stack (see dl and d2 on the stack shown in figure 2.9). The program

counter pc is then incremented to point at DimensionEvalo.

DimensionJZvalO pops dl and d2 from the stack, assigns the units dimension

in in dl to the quantity d2 The result, 2 in, is pushed onto the program stack

(i.e., d), as shown in figure 2.10.

Next, the symbol table pointer for variable x is pushed onto the program stack

by the C function Push-Variableo. The C function Assign-Quantity0

assigns the quantity 2 in to variable x, and the result is stored in the symbol

table. The new x is pushed onto the program stack. The second-to&

machine instruction pops the last item (i.e., the variable x having value 2 and

units dimension in) from the program stack. Finally, (Inst> STOP, halts the

looping mechanism in C function Execute 0.

2.5 Physical Quantities in ALADDIN

A physical quantity is a measure of some quantifiable aspect of the modeled

world. In structural engineering circles, basic engineering quantities such as

length, mass, and force are defined by a numerical value plus physical units.

Systems of physical units enable quantities to be expressed in a number of

ways. For example, a certain length can be measured in terms of meters,

inches, and feet. All three sets of units have the same dimension, with the

numerical value of the physical quantity differing only by a scale factor. While

a conversion between different dimensions is not possible, a conversion of units

of the same dimension only requires a proper scaling.

42

BASE UNITS DERIVED UNITS

Kilogram

El-
MS r

rs
Time

Temperarun

SUPP:LEMENTARY
UNITS

Radians
I I

I
Plane Angle

Mass lnenia

inertia
Atea lnenia

Volume Arca

Angular Velocity Angular Acceleration
1

Figure 2.11: Primary Base and Derived Units in Structural Analysis
1

2.5.1 Physical Units

Figure 2.11 is a schematic of the primary base units, supplementary upits, and

derived units that occur in structural analysis. This diagram is a subset of

units presented in the Unit Conversion Guide.c4) Derived units are expressed

algebraically in terms of base and supplementary units by means of

multiplication and division. Some of the derived units have special names that

may themselves be used to express other derived units in a simpler way than in

base units.

43
p’ F

i
i. “1

ALADDIN’s engineering units module supports operations on engineering

quantities and matrices for both US and SI systems of units. A physical

quantity as an “unscaled value” with respect to a set of reference units, and by

default, all quantities are stored internally in the SI units system. Basic

engineering quantities such as length, mass, and force, are defined by a

numerical value plus physical units. The four basic units needed for engineering

analysis are the length unit L, the mass unit M, the time unit t, and the

temperature unit 2’. In the SI system of units, meter, “m,” is the reference for

length, kilogram, “kg,” for mass, second, “set,” for time, and “degC” for

temperature. Planar angles are represented by the supplementary base unit

rad. Any engineering unit can be obtained with the following combinations:

unit = kLQMb7T” . rad” (2-l)

where a, p, y, 6 and E are exponents, and Ic is the scale factor. For units of

length and mass, the family of exponent settings [CX, ,8, y, 4, E] are [1, 0, O,O, 0]

and [0, 1, 0, 0, 01, respectively. Numbers are non-dimensional quantities, and

given by the family of zero exponents (i.e., [a, fl, y, 6, E] = [0, 0, 0,0, 01).

Arithmetic Operation with Units : In addition to providing clarity for

problem input and output for engineering applications, the integration of units

into arithmetic operations on physical quantities provides a powerful check for

the dimensional consistency of formulas. Put another way, ALADDIN enables

units to be carried along its computations. They act like variables obeying

associativity and commutativity, and laws of exponents. Units are compatible

if they represent equivalent physical quantities, which means that the values of

all units exponents are the same. In fact, many improperly formed expressions

44

can be identified without an in-depth knowledge of the problem background.

Conversions between different but equivalent sets of units is performed

automatically. Units of the same dimension are chosen freely, and differ only

by their scale. Scale factors are needed to convert units in US to SI, and vice

versa. All quantities in US units must be converted into SI before they can be

used in calculations.

The main advantage in defining the unit’s data structure by equation 2.1 is

that we can easily compute the arithmetic operation involving units. To see

how this works in practice, let 41 be a physical quantity with unit scale factor

ki, and unit exponents [al, ,&, yi,Sr, ei]. And let 42 be a physical quantity with

unit scale factor k2, and unit exponents [a~, ,& “/2,&, 4. The logical and

relational comparison operations of two physical quantities q1 and q2 (i.e.,

41 = a, ql # q2, 41 < a, 41 > q2, 41 2 a, 41 L q&an proceed only if the units

of q1 and q2 are equivalent. A units compatibility check is made before the

operation proceeds. The same units checking is also required for addition and

subtraction operations.

For addition and subtraction of physical quantities the unit of the result

depends on the unit types of the operands. If the operands all have the same

units type (e.g., let us say all are SI or US type), then the result units will be

set according to the first operand. If the operands have different units type,

then the result units will be set according to the operand which has the same

units type as the environmental units type. When there are more than one

operands which have the same units type as the environmental units type, the

first one will be the basis for the result units. The default environmental units

type is SI. It can be switch to US type in the input using function

SetUnitsType 0.

Table 2.2: Physical Units in Arithmetic Operation

Description Expression Scale Factor Unit Exponents

Multiplication Ql * 42 h - k2 [~1$-~2,Pl+P2,n+~2,~l+b2,~l+~2]

Division 41/42 h/k2 [ffl - a2,P1 -P2,71 -Yz,b - J22,e -41

Modulus q&22 h/h [a - (Y2,Pl -pz,r1 -rz,& -&22,E1 - e21

Exponential Ql ?I2 kNt 1 [Ncrl,NPl,Nrl,N61,NEllt

j N isthevalueofqz.

1. The expression of modulus only makes sense when the values of both operands are
integers.

2. The expression of exponential only makes sense when q2 is dimensionless.

Table 2.2 shows the result units in other arithmetic operations, including

multiplication, division, modulus, and exponential.

2.5.2 Matrices of Physical Quantities

The units for elements in a matrix are stored in two one-dimensional arrays of

data type DIMENSIONS. One array stores column units, and the second array

row units. The units for matrix element at row i and column j is simply the

product of the i * element of the row units buffer and the jth element of

column units buffer. For example, a 4 x 4 matrix “stiff’ having the row and

column buffers is shown in figure 2.12.

The units for matrix element stiff [il Cjl are defined by the product of units

at the ith and j * locations of the row and column units buffers. This strategy

for storing units not only requires much less memory than complete

element-by-element storage of units, but it reflects the reality that most

46

Column Units Buffer

Row Units Buffer -1

t t

4 i
I ,

N i N/m i N i N/m
B

stiff =

m

?

m
---_

Figure 2.12: Matrix with Units Buffers

engineering matrices are in fact, convenient representations of equations of

motion and equilibrium. The units of individual terms in these equations must

be consistent.

Matrix Addition/Subtraction : To illustrate the application of matrix
f

operations with units, let A be a (2 x 2) stiffness matrix with row units buffer [

m,] and column units buffer [N, N/m]. And let B be a (2 x 2) matrix with

row units buffer [cm,] and a column units buffer [kN, kN/cm]. A missing

item in the row/column units buffers means the corresponding units

component is dimensionless. The units for matrix elements (A),, and (B),, are

k

m * N and cm * kN, respectively. /
Now let matrix C be the result of A f B. The units of the output matrix C

will be the same as A or B, depending on which one is the first operand (see 1
figure 2.13). However, before the matrix operation can proceed, the units of A i

and B must be checked for their compatibility. The matrix dimensions must be

checked for consistency.

47

I
t , . . :

Matrix Multiplication : The handling of units in the multiplication of two

dimensional matrices needs special attention. Let A be a (JJ x 4) matrix with

row units buffer [al, as, - - - , aP] and column units buffer [br, b2, - - *, J3,]. And

let B be a (a x T) matrix with row units buffer [cl, ~2,. - -, cn] and a column

units buffer [dr , da, - - 6 , d,]. The units for elements (A)ik and (B)kj are ai * bh

and ck * dj, respectively. Moreover, let C be the product of A and B. From

basic linear algebra we know that (C), = Aik * Bkj, with summation implied

on indices k. The units accompanying (C), are aibk * Ckdj for k = 1, 2, g.

Because of the consistency condition, all of the terms in & Aik * Bkj must

have same units. This check is made for every element in the matrix (i.e.,

aiblcldj = ai62c2dj = . . . = aibqcqdj). The units for Cij are Gblcldj. The units

buffers for matrix C are written as a row units buffer [arci, a2c1, - Q - , apci 1, and

a column buffer is [dlbl, dzbl, - - . , &bl 1. This arrangement of units exponents

is grap;hically displayed in figure 2.14. It is important to notice that although

the units for matrix C are unique, the solution for the units buffers is not.

48

I I I

Figure 2.13: Units Buffer Addition/Subtraction of Two Matrices

[I A =

. .._..-....-...-.._..........~.

[A]~[B] = [c] =

1 cl

[1
; c2

B = t :
:ck
: : I I
Iq ---

i ; dl & (ji (jr ---- ---- -- ____ ;-‘.‘-~~~....-‘-..‘-.-.~.....--,

- ~..........._____.....~~..~......

Figure 2.14: Units Buffer Multiplication of Two Matrices

e :

I
!

CHAPTER 3 t

i

i

Procedures for Linear Static Structural Analysis

1. I(c
3.1 Specifications of Finite Element Mesh /

i

This section briefly describes ALADDIN’s capabilities for finite element mesh

generation, including addition of nodes and elements, specification of section

and material properties, external loads, and boundary conditions.

3.1.1 Problem Specification Parameters

ALADDIN’s specification parameters are used for the allocation of memory for

the finite element mesh.

i.

:

Short Example : In this short example, the problem specification parameters

are initialized for a three-dimensional structural analysis that uses an

eight-node shell finite element.

*
NDimension = 3; /
NDofPerNode = 5; :
MaxNodesPerElement = 8; /* etc */ 1;

3.1.2 Adding Nodes and Finite Elements
I

Two functions, AddNode 0 and AddElement 0, are employed for the generation

of finite element nodal coordinates, and the attachment of finite elements to

the nodes. F
b

Short Example :
t

Figure 3.1 shows a two-dimensional coordinate system, and
r

p
51 F

a line of six finite element nodes connected by two-node beam finite elements.

The nodes are located at y-coordinate = 1 m, and are spaced along the x-axis

at 1 m centers, beginning at x = 1 m and finishing at x = 6 m.

, I I I I I u
I 1 I I , zw

1 2 3 4 5 6 x (4

Figure 3.1: Line of Nodal Coordinates and Beam Finite Elements

ALADDIN’s looping constructs are ideally suited for specification of the finite

element nodes in a compact manner, and for the attachment of the two-node

finite elements. For example, the fragment of code:

print "*MC Generate grid of nodes for finite element model \n\n";

nodeno = 0;
x=lm;y=lm;
while(x <= 6 m) <

nodeno = nodeno + 1;
AddNode(nodeno, cx, ~1);
x=x+lm;

3

print "f** Attach finite elements to nodes \n\n";

elmtno = 0; nodeno = 0;
while(elmtno < 5) <

elmtno = elmtno + 1; nodeno = nodeno + 1;
AddElmt(elmtno, [nodeno, nodeno + II, "name-of-elmt-attr");

3

generates the one-dimensional mesh shown in figure 3.1. In the first half of the

script, six nodal coordinates are added to ALADDIN’s data base. The second

block of code attaches five elements to the nodes. You should notice how we

52

have used the notation [nodeno, nodeno + II to generate (1 x 2) matrices

containing the node numbers to which that elmtno will be attached.

3.1.3 Material and Section Properties

The element, section, and material type attributes are specified with three

functions, ElementAttr 0, SectionAttr 0 and MaterialAttr 0, followed by

parameters inserted between braces {s s -1. A list of the section and material

property parameters can be found in reference [6].

Short Example : The following script loads a finite element attribute called

“floorelmts” into ALADDIN’s data base.

ElementAttr("floorelmts") C type = "FRAME-2D";
section = "floorsection";
material = "floormaterial";

3

SectionAttr("floorsection") (Ixy = I m-4;
IYY = 2 m-4;
Ixx = 3 m-4;
122 = 0.66666667 m-4;
depth = 2 m;
width = 1.5 m;

3

MaterialAttr("floormaterial") (E = lE+? kN/m-2;
density = O.l024E-5 kg/m^3;
Poisson = 1.0/3.0;
yield = 36000 psi;

3

The “floorelmts” attribute has three components - the finite element type is

set to F’RAME2D, for two-dimensional beam column finite elements. The

element’s section and material properties are defined via links to the section

attribute “floorsection” and the material attribute “floormaterial.”

3.1.4 Boundary Conditions

Boundary conditions are applied to a structure using the FixNode 0 function.

FixNode 0 has one matrix argument containing one row, and a number of

columns equal to the number of degrees of freedom at the node. A matrix

element value of 1 means that the corresponding degree of freedom is fully

fixed. A matrix element value of 0 means that the corresponding degree of

freedom is free to move.

Short Example : This script fixes the boundary conditions of a finite element

mesh at nodes 1 through 5.

dX= 1; dy = 1 ; dz = 1;
rx = 0; ry = 0 ; rz = 0;

bcond = [dx, dy, dz, rx, ry, rz 1;

for(iNode = I; iNode <= 5; iNode = iNode + 1) (
FixNode (iNode , bcond >;

3

We have used the variables dx, dy, and dz to represent translational

displacements in the x, y, and z directions, respectively, and the variables TX,

xy, and rz for rotational displacement about the x, y, and z axes. Now nodes 1

through 5 are fixed in their translational degrees of freedom, and pinned in the

three rotational degrees of freedom.

3.1.5 External Nodal Loads

Externally applied nodal loads are specified with the function

NodeLoad (nodeno, load-vector) ; .

54

Short Example : The following script adds two translational forces, and one

moment to nodes 1 through 5 in a two-dimensional finite element mesh.

FxMax= 1000.0 lbf; Fy = -1000.0 lbf; Mz = 0.0 lb+in;

for(iNode = 1; iNode <= 5; iNode = iNode + 1) (
Fx = (iNode/5)*FxMax;
NodeLoad(iNode , C Fx, Fy, Mz I);

1

Externally applied loads in the x-direction are 200 lbf at node 1, and increase

linearly to 1000 lbf at node 5. A gravity load of Fy = -1000 .O lbf is applied

to each of the nodes 1 through 5.

3.2 Generation of Mass and Stiffness Matrices

After the details of the finite element mesh have been fully specified, the next

step is to calculate the finite element properties and assemble them into an

x

“-

equilibrium system. For structural finite element analysis, this step involves

calculation of the stiffness and mass matrices, and an external load vector.

Short Example : In the following script of code, mass is the global mass

matrix, stiff is the global stiffness matrix, and eload is a vector of external

nodal loads applied to the finite element global degrees of freedom.

mass = Mass(Cl1); /* 111 : lumped mass, C-11 : consistent mass */
stiff = StiffO;
eload = ExternalLoad{);

t

Note that the three functions Mass{), Stiff 0, and ExternalLoad should

be called only after the function call to EndMesh .

55

3.3 Solution of Linear Matrix Equations

After the finite element mesh has been generated, and the mass, stifEness , and

external load matrices have been assembled, the next step in the structural

analysis is solution of the linear matrix equations

where [A] is a (n x n) square matrix, and {z) and {b) are (n x 1) column

vectors. For a linear structural analysis [A] will correspond to the stiffness

matrix, {b) will be the vector of externally applied nodal loads, and (5) will be

the vector of nodal displacements that needs to be computed.

Generally speaking, the computational work required to solve one or more

families of linear equations is affected by:

1. The size and structure of matrix A;

2. The computational algorithm used to compute the numerical solution;

and

3. The number of separate families of equations for which solutions are

required.

Figure 3.2 summarizes four pathways of computation for the solution of linear

equations [A] {z) = {b}. Wh en matrix A is is either lower or upper triangular

form, solutions to [L] {x) = {b} can be computed with forward substitution,

and solutions to [U] {x} = {b} via backward substitution. Algorithms for

forward/backward substitution require O(n2) computational work. The

method of Gauss Elimination is perhaps the most widely known method for

solving systems of linear equations. In the first stage of Gauss Elimination, a

56

BACKWARD SUBSTITUTION

IUltxt=tbt

FORWARD SUBSTlTUTlON

[Lllxt=ibt
O(n”2)

F (xl
/
i
i

GAUSS ELIMINATION
1
!

[Allxt =ibl
0 (n*3) O(n”2)

Row Operations * IUl(xl=tbt
Backward Substitution.

> Ixt

LU DECOMFOSllTON

[Allxt =tbt
0 (l-P3)

* [Al= [Ll[Ul
O(tPZ) [‘J 1 i z-1 t = i b-1 I

ILILX1 t=1r1 t

I O(nA2) *: [Ullz-Zt={U)

rL1~x21=12~21.

O(nA2) _ [Ultz-3t=lb-3)

-[
[Llix-3) ={231

Fonvani Subsitution f&wed by Backward Substirution

Figure 3.2: Strategies for Solving [A] (2) = (b}

set of well defined row operations transforms [A] (z} = (b} into [U] (z} = {b*}.

In the second stage of Gauss Elimination, the solution matrix x is computed

via back substitution. The first and second stages of Gauss Elimination require

O(n3) *and 0 (n2) computational work, respectively.

When solving the families of equations [A](x)= {b} many times with different

right-hand side vectors b, for example, in figure 3.2, {br}, {bs), and (b3)

represent three distinct right-hand sides to [A](x)= (b), the optimal solution

procedure is to first decompose A into a product of lower and upper triangular

matrices (requiring O(n3) computational work), and then use forward

substitution to solve [L] {x} = (b}, followed by backward substitution for

[U] {z} = {x) (this step requires O(n2) computational work). While solutions

to the first set of equations requires O(n3) computational work, solutions to all

subsequent families of [A](x) = (b} re q uires only O($) computational work.

The solutions to linear equations can be computed with the single command

x = Solve(A, b).

The ALADDIN function Solve0 computes the solution to a single family of

equations via the method of LU decomposition. The numerical procedure is

identical to the twocommand sequence

LU = Decompose(A);
X = Substitution(LU, b).

LU decomposition can be used to solve a family of equations with different

right-hand side vectors b. For example:

LU = Decompose(A);
Xl = Substitution(LU, bl). /* Solve [A].xl = bl */
x2 = Substitution(LU, b2). /* Solve [Al-x2 = b2 */
x3 = Substitution(LU, b2). /* Solve [A].x3 = b3 */

The following section contains two numerical examples that demonstrate how

the solution of matrix equations applies to the analysis of highway bridge

structures.

3.3.1 Three-Dimensional Analysis of a Highway Bridge

This example illustrates the linear elastic three-dimensional analysis of a

two-span highway bridge using a four-node shell element. The highway bridge

will be analyzed for two loading conditions. First, we compute the deflections

of the bridge caused by gravity loads alone, and in part two, the moving live

load diagram generated by a truck moving across the bridge.

58

E
p

k t
;r

-3, ____--_--_--_-----__----------------~----------------------------------~-

100 ft.
-z

100 ft.
J i

4%

F4
;s

EXAM-DIG PLAN

I
I F

I 1

Figure 3.3: Plan and Front Elevation of Bridge

/- 7” C0NCRE.E SLAB
&,

-I h J

-_-_____--____-_ --- - - - - - - - r - - - - -_---- - - - - - - - - - - - - ------__-----_--

W36x170 W36x170

4’ 2”
e

8’ 4” 4’ 2”

-.
P

CROSS SFXXTON OF HIGHWAY BRIDGE

Figure 3.4: Cross Section of Bridge

59

Node 19 Node 209 Node 399
I

Node 13 Node 203 Node 393

10 @ loft = 100 ft. 10 @ loft = 100 ft. e r

Figure 3.5: Plan of Finite Element Mesh for Bridge

4’ 2" I- 8’ 4" ,- 4' 2"
I- *

Y
13 14 1 2 3 1s 16 17 I 8 9 18 19

-- -------*---@-y+ -----*-------- -------- & ---- -

I

2’ 1” 2’1” 1 2’ 1” 2’1” __ 2’ 1” 2’1” 1 2’ 1” 2’ 1”
,- 7- ,- ,- I-

Figure 3.6: Cross Section of Finite Element Mesh for Bridge

60

A plan and front elevation view of the highway bridge is shown in figure 3.3. i
The bridge has two spans, each 100 ft long. The width of the bridge is 16 ft - 8

inches. A cross section view of the bridge is shown in figure 3.4.

A detailed description of the material properties can be found in Austin et

EL.@) The left-hand side of the bridge has a hinged support boundary

condition. The right-hand side of the bridge is supported on a roller. The finite

i

element model has 399 nodes and 440 shell elements. After the boundary

conditions are applied, the model has 2374 d.o.f.

Static Dead Load Analysis : In part one of analysis, we conduct a static

analysis with dead load alone. The abbreviated input file is:

ABBREVIATED INPUT FILE

. details of parameter definition o.....

StartMeshO;

. details of mesh generation 1

EndMesh();

/* Compute stiffness matrix and external load vector */

/ L
;.
8‘

eload = EkternalLoadO;
stiff = Stiff();

/* Compute and print static displacements */

displ = Solve(stiff, eload);

/* Print analysis results and quit program */

PrintDispl(disp1);
PrintStress(disp1);
quit;

Figures 3.7 and 3.8 are a contour plot and three-dimensional view of the bridge

deck deflections, respectively. (the vertical axis of the deflection of figure 3.8

61

has the units of inches). The bridge deflections are cause by dead loads alone,

and since the bridge geometry and section properties are symmetric, the

deflections were expected to also exhibit symmetry. They did.

62

1 , I ,

20L

18-

m

8
6-

‘0
,o
G 4- ‘t (3

z-
I I I 8

1 2
Grid

zodes a/on; 5 6 7 8 9
Bridge Cross Section (Spacing 2’-1”)

Figure 3.7: Contour Plot of Bridge Deck Deflections

Bridge Deck Displacements

Figure 3.8: Three-Dimensiohal Mesh of Bridge Deck Deflections

i
i

i

Moving Truck Load Analysis : In part two of the bridge analysis, a 1000

kips concentrated live load moves along one of the outer bridge girders. We

compute and plot the influence line for the moving load. The latter sections of

the input file are extended so that response envelopes are computed for a point

load moving along the bridge.

LOAD DIRECTION -

10 LOAD INCREMENTS @ 10 FT 10 LOAD INCREMENTS @’ 10 FT
c

FRAMING PLAN

LOAD DIRECTION -

I I

I
I
I I

L
100 k 1 I 100 ft.

I- 2-i

FRONT ELEVATION

Figure 3.9: Plan and Front Elevation of Bridge with Moving Live Load

I 1000 KIPS [MOVING LOAD 1

4

______ - - - - - - - - - - - - - _________-__-__------------------ _________-_-----w--

4’ 2” 8’ 4” 4’ 2”
r I *

CROSS SECTION OF HIGHWAY BRIDGE WITH MOVING LIVE LOAD

Figure 3.10: Cross Section of Bridge with Moving Live Load

64

Figure 3.9 shows plan and elevation views of the bridge and moving point load.

A cross sectional view of the bridge and the moving point load are shown in

figure 3.10. The relevant details of the abbreviated input file are as follows:

ABBREVIATED INPUT FILE

/* Compute stiffness matrix and LU decomposition */

stiff = StiffO;
lu = Decompose (stiff);

/* Adding moving truck load

for(i=l ; iC=step ; i=i+l > (
NodeLoad(load-node, CFX,FY,FZ,M~,MY,MZI >;

eload = ExternalLoadO;
displ = Substitution(lu, eload 1;

node-displ-l = GetDispl([nodenoll, displ 1;
node-displ-2 = GetDispl(Cnodeno21, displ 1;

influ-1inelCil I31 = node-displ-lCllC31;
influJine2 CilC11 = node-displ-2ClIC31;

NodeLoad(load-node, C-Fx,-Fy,-Fz,-Mx;-My,-Mz] 1;
load-node = load-node + nodes-per-section;

3 e

Figure 3.11 shows the influence line of vertical displacement in the middle of

one span (i.e., at node no 97) for the first girder subjected to 1000 kips moving

live load. Similarly, figure 3.12 shows the influence line of displacement in the

middle of one span (i.e., node no 2 = 103) due to the 1000 kips moving live I-

load.
I

The moving load analysis is one situation where a family of linear equations is i

solved with multiple right-hand sides. With this observation in mind, notice L
r‘

how we have called the function Decompose0 once to decompose stiff into a

product of upper and lower triangular matrices, and then called
2

65

Substitution0 to compute the forward and backward substitution for each

analysis. This strategy of equation solving reduces the overall solution time by

approximately 70 percent.

10 I I 1

..,., .,...) I M? .j __,....... ‘...

..... : 1 ~~/!_ ::.
I

j....

\
1.

.~.......

:.

.: .

.;.

,

A

First girder coordinate (ft)

Figure 3.11: Influence Line of Displacement in the Middle of One Span for the
First Girder Subjected to 1000 kips Moving Live Load

66

.- I

0 20 40 60 80 100 120 140 160 180 200
Middle girder coordinate (tt)

Figure 3.12: Influence Line of Displacement in the Middle of One Span for the
Second Girder

3.3.2 WSD Checking of Simplified Bridge

This example illustrates the application of ALADDIN to .4ASHTO Working

Stress Design (WSD) code checking. It is adapted from one of the examples for

MERLIN DASH presented in the ENCE 7.51 class n&s, University of

Maryland.

A finite element analysis will be made of a one span, simply supported,

composite steel W-beam bridge with cover- plated bottom flanges. The beam

response will then be checked against a small family of WSD design rules.

The analysis will be simplified by considering only a single interior girder. A

plan and cross-sectional view of a typical bridge framing system are shown in

figures 3.13 and 3.14.

56.7’ E. IOC Bcving I

t f
i

__-------------a____-m---B-----

I

,j

_-------------______---------- -i
i

7 @ 7.63

!

t
.c

Figure 3.13: Plan of Highway Bridge

The bridge girders are made of rolled beam W33xl30 with a 14” x 3/4” steel

cover plate. An elevation view of the bridge and the position of the steel cover

plate is shown in figure 3.13. The material properties are F’ = 50 ksi and E, =

29,000 ksi. The effective cross sectional properties of the composite section

Extracted Internal Girder

-T-w< *+7-N /

3.5’ 7 @ 7.63’ 3.5’

Figure 3.14: Typical Cross Section

w33x130 i
1

I

k

cover plate 14”x3/4”
-y--iq ;

;

Figure 3.15: Elevation of Beam i
i

7 in slab

Haunch width = 19.5in
Haunch depth = 1.86in

cover plate 14”x3/4” /

II= 17268.4 in* 12 = 25700.1 in”
1

yl = 29.40 in y2 = 27.31 in
k

Figure 3.16: Section Properties (n = 10)

69
r

(with and without the cover plate) are computed with n = Es/EC = 10. The

section properties are shown in figure 3.16.

The bridge is subjected to external dead and live loading. The design dead

load is due to a concrete slab that is 7 inches thick, a steel girder, and

superimposed load. The design live load consists of a 72 kips HS-20 truck,

modeled as a single concentrated load moving along the girder nodes. The

abbreviated input file below shows details of the WSD rule checking.

ABBREVIATED INPUT FILE

/* WSD code checking for deflections and stress requirements */
/* Cl] Deflection checking */

impact = I + 5O/(length+125);
if(-impact*msx-displ-liveCllC21 > (1/800)*length > then <

print "\n\tWarning: (LL+I) deflection exceeds l/800 span\n";
3 else C

print "\n\tOK : (LL+I) deflection less than l/800 span\n”;

3

/* [2] Moment stress checking */

if(stress1 > 0.55*my-material[31[1]) then<
print "\n\tWsrning : moment stress without cover plate larger

than 0.55*Fy\n";
3 else 4.

if(stress2 > 0.55*my-materialC3lCll 1 theni:
print "\n\tWarning : moment stress with cover plate larger

than 0.55*Fy\n";
3 else C

print "\n\tOK : moment stress less than 0.55*Fy\n";
3

3

/* [3] Shear stress checking */

if(shear > 0.33*my-materialC31 Cl3 > then(
print "\n\tWsrning : shear stress larger than 0.33*Fy\n";

3 else (
print "\n\tOK : shear stress less than 0.33*Fy\n";

3

Points to note in the input are:

70

1. In this example, we check the analysis result with AASHTO WSD

specification. The impact factor for live load is based on the formula

AASHTO Eq. (3-l)
50

1
= L + 125

in which

I = impact fraction (maximum 30 percent);

L = length in feet of the portion of the span;

2. The deflection checking is based on AASHTO Art. 10.6.2, the deflection

due to service live load plus impact shall not exceed l/800 of the span.

3. The allowable stress is 0.55 x Fy for tension and compression member,

0.33 x Fy for shear in web.

4. The follow array elements are used in the generation of program output: i

max_displlN CZ] = the maximum displacement of the beam.
max-mom C21 C31 = the maximum moment.
max-sh Cl1 121 = the
cover_mom[2][3] = the

r
i.

maximum shear force.
moment at nhere the bridge section changed.

i
A summary of the bridge response is contained in figures 3.17 to 3.19. The

following points are noted:
,

1. Since this is a simple-supported bridge, the maximum displacement and

maximum bending moment will occur at the middle of the span. The

maximum shear force will occur at the end support.

2. The final results of moment, shear and displacement are calculated

according to AASHTO WSD request: Total = DL + impact * LL. The

output message about the deflection checking is

71
b

- -

OK : (LL+I) deflection less than l/800 span

3. The stress caused by bending is given by:

M-Y Moment stress = I.

Because there are two different section properties, not only the maximum

moment stress in the middle of the span (stress2) needs to be calculated

but also the moment stress where the section changes (stressl). Shear

stresses are given by:

Shear stress = A.

The author assumed that the shear force was carried by the girder web

alone, and therefore, only the maximum shear at the end support were

checked. The output messages about the moment and shear stress

checking are

OK : moment stress less than 0.55*Fy
OK : shear stress less than 0.33*Fy

4. The influence line diagram for the bending moment at the middle of the

span is shown in figure 3.18. It is obtained by iteratively positioning one

truck load at a finite element node, then solving for the reaction forces. A

similar procedure is employed to compute the influence line of shear force

at the end support - see figure 3.19.

5. Figure 3.17 shows the distribution of bending moments caused by truck

loading (it is noted in passing that the bending moment diagram

corresponds to an envelope of the moment influence lines of the truck

load).

72

x106
12- I . ..- --. 1

.’ ‘\
.’ ‘\

/ ‘\
/. ‘\

/‘
lo-

‘\
I’ ‘\

/’ ‘\
/’ ‘\

I. ‘\
8- I’ ‘\

I’ ‘\
E I’ ‘\
t
&

i \
I’

g 6-
.\

/. ‘\
E i

8
‘\

- Moment for Dead Load
- - Moment Envelope of Truck Load

20 30 40 50
Bridge Span (ft)

Figure 3.17: Moment Diagram of Dead Load and Truck Load

8-

6-

IO”

I I
20 30 40 50

Truck Location (ft)

Figure 3.18: Influence Line of Moment at Mid-Span

Figure 3.19: Influence Line of Shear at End Support

74

CHAPTER 4

Fiber Beam-Column Element

4.1 Introduction

A fundamental tenet of performance-based seismic design is the expectation of

nonlinear structural behavior caused by severe earthquake ground motions.

Events of this type necessitate nonlinear time-history analysis of structures.

However, because of the complex interactions between the various components

of real structures, the nonlinear response of a structure is not always easy to

capture. State-of-the-art solution procedures use structural models that are an

assembly of interconnected elements capable of modeling nonlinear material

and geometric behavior.

-u li

i

L
Figure 4.1: Lai’s Model for Inelastic Element a i

i.

I

i:

The earliest beam-column elements incorporating nonlinear behavior assumed

that plastic deformations would only occur at the beam end-points. For

example, the fiber hinge model proposed by Lai et al. assumes that nonlinear

i

75 :‘
1

behavior will only occur at the element end-points.(26) The nonlinear

components of the element consist of a bunch of springs having nonlinear

force-displacement relations, as shown in figure 4.1. More accurate descriptions

of the inelastic member behavior are possible with distributed nonlinearity

models. Material nonlinearities can take place at any element section. The

element behavior is derived by weighted integration of the section response. In

practice, however, since the element integrals are evaluated numerically, only

the behavior of selected sections at the integration points is monitored.

Filippou and Issa have proposed an analysis method where elements are broken

into sub elements. Each sub element is capable of describing a single effect.(16)

The interaction between these effects is achieved via a judicious combination of

sub elements. The advantages of this modeling approach include the use of

relatively simple nonlinear hysteretic laws at the sub element level, while not

compromising the ability of the element system to mimic complex hysteretic

behavior through the interaction of the different sub elements. The first

elements with distributed nonlinearity were formulated with the classical

stiffness method. However, as these investigators soon discovered, the main

shortcoming of stiffness-based elements is their inability to describe the

behavior of the member near its ultimate resistance. Many implementations

are plagued with problems of numerical instability.

Mahasuverachai was the first investigator to propose the use of flexibility

dependent shape functions that are continuously updated during the analysis

as inelastic deformations spread into the member.(27) The flexibility approach is

based on force interpolation functions within the element, and it has the benefit

of permitting a more accurate description of the force distribution within the

76

element. In fact, for those cases where no element loads are applied, the force

interpolation functions satisfy element equilibrium in a strict sense. This

condition holds even when material nonlinearities occur at the section level.

For structural members constructed from more than one material, (e.g.,

reinforced concrete members and lead-rubber base isolator elements), the most

promising models for the nonlinear analysis of such members are

flexibility-based fiber elements, as proposed by Filippou et a1..t4@ Filippou and

co-workers also present a nonlinear iterative element state determination

procedure that always maintains equilibrium and compatibility within the

element, and eventually converges to a state satisfying the section constitutive

relations within a specified tolerance.

The purposes of this chapter are two fold. First, the formulation of a

flexibility-based fiber element that incorporates both flexural and shear effects

is presented. We then demonstrate the effectiveness of the element state

determination procedures by computing the load-displacement relationship for

a material softening bar subject to a range of axial loads.

4.2 Fiber Beam-Column Element

4.2.1 Fiber Model

Figure 4.2 shows the elevation and cross-section views of a typical fiber

beam-column element. In its longitudinal direction, the element is subdivided

into a discrete number of fiber sections located at control points of the

numerical integration scheme used in the element formulation. The

cross-sectional view indicates how individual fibers of area &fib are positioned

in the y - z reference system.

77

Y
Fiber position

&fib , (yi , Zi) t

J
Integration section i L m Flexural fiber

Section i Section i+l

Shear spri g

Figure 4.2: Fiber Element Model

The nonlinear constitutive relations of the overall element cross-section are

derived by integration of the nonlinear stress-strain relations of the individual

fibers. Each fiber follows a uniaxial stress-strain relation for a particular

material.

The fiber beam-column element formulation is based on the assumption of

linear geometry. Plane sections remain plane and normal to the longitudinal

axis during the element deformation history. From the assumption that plane

sections remain plane and normal to the longitudinal axis, we conclude that all

fiber strains and stresses act parallel to this axis. Since the reference axis is

fixed, the geometric centroid of the sections form a straight line that coincides

with the reference axis. If an element does not comply with this hypothesis,

then it should be divided into sub-elements that connect the centroids of the

selected sections.

78

4.2.2 Material Nonlinearity

In a fiber element, the constitutive relation for each integration section

corresponds to the integration of individual fiber relations at that integration

point. Complex nonlinear section behavior can occur even if the individual

fibers are modeled with nonlinear stress-strain relations in the uniaxial

direction alone. The fiber element that we have incorporated into ALADDIN

has a bi-linear stress-strain relationship in uniaxial stress, and follows the

kinematic hardening rule. See figure 4.3. /

Figure 4.3: Stress-Strain Relationship for Fiber Element

The precise stress-strain relations are defined by three criteria:

1. Yield criterion: Yielding begins when Ial reaches ay, either in tension

or compression.

2. Flow rule: if the material has yielded, da = Et de; if the material has

yet to yield or is unloading, then da = E de.

3. Kinematic hardening rule: While reloading, the response will be

b
i

elastic until it reaches the previous unloading point, which is point B in

figure 4.3. While loading is reversed, the yielding reappears at 0~3 - 2ay,

which means that there is a total 20~ elastic stress range.

4.3 Formulation of Fiber Beam-Column Element

Formulation of the fiber beam-column element requires two steps. First, the

generalized forces and deformations must be defined. The distribution of forces

along the element and the section material and cross-sectional properties are

then used to complete the tangent stiffness matrix.

4.3.1 Definition of Generalized Forces and Deformations

The generalized element forces and deformations, and the corresponding

section forces and deformations are shown in figure 4.4. Rigid body modes are

not included in figure 4.4. Since the present formulation is based on linear

geometry, rigid body modes can be incorporated with a simple geometric

transformation. To simplify the definition and manipulation of the relevant

equations, the forces and deformations in the element and section states,

stresses and strains of fibers at each section, are grouped into the following

vectors:

Element force vector Q = (&I Q2 Q3 Q4 Q5 IT

Element deformation vector q = -c Ql Q2 43 44 45 1’

80

Figure 4.4: Generalized Forces and Deformations at Element and Section Level

Section force vector 33(z) =

Section deformation vector d(z) =

N,(x)
4l (4
MZ (4
w4
K(x)

Ex (4

x&d

x.2 (4

%I (4

, Y&J:)

81

‘%fib(x, !&fib, &fib)

Fiber strain vector e(z) = <

Gx (x7 Yn, &)

I aifib(x, @fib, &fib)

Fiber stress vector a(z) = (

In the fiber state, vector x describes the position of the section along the

longitudinal reference axis, and vectors j./ifib and &fib refer to the fiber position

in the cross section, as shown in figure 4.2. The variable n refers to number of

fibers in the cross section.

4.32 Fiber Beam-Column Element Formulation

The force distribution D(x) along the element is related to the element

generalized force vector Q by the force interpolation matrix b(z):

D(x) = b(x) . Q.

Now lets assume that the axial force field N,(x) shown in figure 4.4 is

82

constant. It follows that the bending moment fields MY(x) and M,(z) will be

linear, and the shear force fields V,(z) and V,(x) will be constant. The force

interpolation matrix is selected as:
/ \

1 0 0 0 0

0 f-1 x
Tz

0 0

b(x) = < o o o ;-I ; >.

oooll

0 -- ;
L E

1 --
L

0 0

Following the hypothesis that plane sections remain plane and normal to the

longitudinal axis, the fiber strain vector and the section deformation vector are

related by the section compatibility matrix l(x) by:

E(X) = l(x). d(x),

where l(x) is a linear geometric matrix as follows

l(x) =

1 Xl -Y1 0 0

.

1 Xifib -!&fib 0 0

.

1 && -yn 0 0

00 0 1. 0

00 001
,

The tangent modulus &fib of the fibers is determined from the appropriate

fiber stress-strain relations, computed when the fiber strains are updated for a

new given deformation increment Ad(x). The tangent modulus and the areas

of all fibers are written in diagonal matrices:

i- :
83

E tan =

-&fib
*.

Et-t
G

G

A=

f&fib

42
AZ

A;

where

G is element shear modulus, AZ and A; are element shear area in z and y

directions. The new section tangent stiffness matrix can be calculated from

k(z) = IT(x) - (Etan - A) . l(x).

The section tangent stiffness matrix k(z) is then inverted to obtain the new

section tangent flexibility matrix f(z). The section resisting forces DR(z) are

computed by summing all of the new fiber stresses. In mathematical terms, we

compute:

D&T) = lT(z) - A - a(z).

It is important to point out that all section matrices and vectors are computed

with respect to a fixed section reference system which coincides with element y

and z axes.

4.3.3 Newton-Raphson Method

The analysis of structures having nonlinear material behavior typically requires

solutions to families of nonlinear equations. One of the most commonly used

procedures is Newton-Raphson iteration.(13)

84

PB

PA

0

PB - PA

AU1 *- Auz-

*
1 UA Ul UZ UB U

Figure 4.5: Newton-Raphson Solution Procedure i"
P

Figure 4.5 illustrates the Newton-Raphson solution procedure for a

displacement UB caused by an external force PB. The iterative procedure

begins at point A, (i.e., at coordinate (UA, PA)) and involves repeated solutions

of [Ks]“-l{Ap)” = {AP E } ‘, where the tangent-stiffness matrix [K,] is updated

after each iteration. The resisting force (PR}~ is calculated and is used to

compute the unbalanced load {Pv}” = {P) - (P#. If the unbalanced load

{Pv}” is not within the specified tolerance, i is incremented to i + 1 and the

next iteration begins with {APE}~+~ = {Pu}~. The solution process seeks to

reduce the unbalanced load (Pu}, and consequently {Ap}, to zero. Iterations

continue until the unbalance loads reduce to less than a pre-specified level.

85

4.3.4 Fiber Beam-Column Element State Determination

During the structure state determination, each iteration of Newton-Raphson

iteration i is organized as follows:(46)

1. Solve the global system of equations and update the structure

displacements.

K$-1 . Api = APL

*i = pi-l + Api

(4-l)

(4-2)

2. Compute the element deformation increments and update the element

deformations.

Aqi = Lele . Api

qi = qi-l + nqi

(4.3)

(4.4)

The matrix Ld, relates structural displacements with’element

deformations and is the combination of two transformations: let q be the

element displacements with rigid-body modes in the local reference

system, in the first transformation the element displacements in the

global reference system p are transformed to the displacements & in the

element local reference system. In the second transformation the element

displacements q are transformed to element deformations q by

elimination of the rigid-body modes.

3. Start the fiber beam-columrrelement state determination. The state

determination of each element is performed in a loop j that surrounds all

elements in the structure. The index of the first iteration is j = 1.

86

When j = 1, {}j-l = {lo = oiml un ess 1 indicated otherwise, where i - 1

corresponds to the state of the element at the end of the last i - 1

iteration.

4. Compute the element force increments.

AQj = KS-1 . Aqj
(4.5)

B

f
Whenj= 1, Aql = Aqi.

5. Update the element forces.

&j = &j-l + AQj
w-3

i

r

6. Compute the section force increments. bi

AD+) = b(z) . AQj
f

D+) = D+‘(z) + AD+) (4.8)

Steps 6 through 13 are performed at all of the control sections (i.e., .

integration points) in a fiber element.

(4.9)

7. Compute the section deformation increments.

Adj(z) = fj-‘(z) . ADj(z) + rj-l(z)

d+) = d+‘(z) + Ad+) (4.10)

where r(z) is the residual section deformations from the previous

iteration. Note that when j = 1, r”(z) = 0.

8. Compute the fiber deformation increments.

A&) = l(z) - Ad+)

+) = p-1 (cc) + Ad(z)

(4.11)

(4.12)

87

9. Compute fiber stresses and tangent modules.

According to the material properties and the stress-strain relationship of

the fibers, the stresses o&(x, gifib, zifib) and tangent modules IZ&(x) of

all fibers are computed from the stresses o$$ (z, ~ifib, ,z+) and strains

e&(x, pifib, .z+b) at the previous step j - 1, and the current fiber

deformation increments &&, .

10. Compute the section tangent stiffness and flexibility matrices.

k(z) = lT(z) . (Et, . A). l(z)

The result of the section tangent stiffness is:

kj(x) =

0 0 0 GA; 0

0 0 0 0 GA;
(4.1

where n is the total numbers of fibers in the cross-section, Aifib is the

cross-section area, and Eifib is the tangent Young’s modulus of the if@

fiber element at section x. The latter is computed at step 9.

The stiffness matrix is then inverted to obtain the new section flexibility

matrix.

fj(x) = [kqx)]-l (4.14)

88

11. Compute the section resisting forces.

Da(x) = lx(x) - A - a(x)

After carrying out the multiplication, the result of the section resisting

forces corresponds to the summation of fiber element axial force, bending

moment, and shear force contributions is:

D$(x) =

where ~fib is the stress of the ifi@ fiber element at section x that is

computed from step 9.

12. Compute the section unbalanced forces.
,

b$(x) = e(x) - D;(x) (4.16)

13. Compute the residual section deformations.

d(x) = fj(x) - D$(x) (4.17) I

t ;
14. Compute the element flexibility and stifEness matrices.

L

Fj = J bT(x) - fj(x) . b(x) . dx
0

m
=

c W nsec * bT (xnsec) . fj (xnsec) * b(xnsec) (4.18)
nsec=l

89
r

1. !a-‘

Kj = [I+]-’ (4.19)

The numerical integration is carried out with the Gauss-Lobatto(44)

integration scheme. m is the number of monitored sections in the

beam-column element, z,,,, is the x coordinate of the section in the local

reference system, and wnsec is the corresponding weight factor.

15. Check for convergence of resisting forces from the element deformations.

(a) If the element has converged, set element forces Qi = Qj and

stiffness Ki = Kj. Go to step 16;

(b) If the element forces have not converged, compute the residual

element deformations

sj = / b*(z) - ti(zc) + dz
0

m
= c Wnsec s b*(xnsec) . G(znsec) (4.20)

nsec=l

then increment j to j + 1 and set Aqj+l = -sj. Repeat steps 4

through 15 with Aqj+l until element convergence is reached.

16. Compute the new structure resisting forces and structure stiffness matrix.

Iteration i is complete when all of element forces have converged.

pk = 5 LI$e ’ (Qi)ele
ele=l

(4.21)

Kz = l? L$e * W)ele * be (4.22)
ele=l

If convergence at the structural level is achieved, apply a new load

increment, otherwise continue the Newton-Raphson iteration process.

90

4.4 Numerical Examples

4.4.1 Material Softening Composite Bar

Before implementing the fiber element in ALADDIN, we want to test the

algorithm defined by equations 4.1 to 4.22 with the force-displacement

computation for a material softening composite bar subject to axial loads. This

example is inspired from Appendix C of Filippou et al..(46) It is important to

bear in mind that while this problem looks trivial, standard stiffness-based

elements experience difficulty with this problem because assumed distributions

of force-displacement deviate significantly from actual displacements, especially

in the post-yielding region. Hence, standard stiffness-based approaches to this

problem have difficulty computing a displacement that satisfies equilibrium of

the section forces.

The composite bar is constructed from two materials - one is always elastic,

the second has softening material behavior after yielding. The section

dimensions and material properties are shown in figure 4.6. The axial load

versus time step is shown in figure 4.7. The following abbreviated script of

code shows the essential details of the solution algorithm for the two-element

softening bar problem:

ABBREVL4TED INPUT FILE

L = C-l , 11; /* transformation matrix Lele */
bx = I; /* force interpolation matrices b(x) */

/* assemble initial structure tangent stiffness matrix BigK */
BigK = [Ksl+KsZ, -Ks2; -Ks2, Ks2];

/* increase displacement, structure determination */

for (step=l; step<=total-step ; step=step+l) C

P = p + d-p;

;
1

91

i

bl = 10 cm
hl = 30 cm
L1=2m

b2 = 10 cm
h2 =.20 cm
L2 = 1.5 m

EI = 30000-%1~ E2 = 20000%2
Et1 = -O.l.El
oyl = lOOON/,z

Figure 4.6: Composite Bar under Axial Load

Step Number

Figure 4.7: Axial Load

92

/* state determination for each element */

for(ele=l;ele<=2;ele=ele+l) <

. details about retrieving data from (j-1) /
q = q + d-q;

/ ,
/* element converge, j */

while(abs(DUx) > 0.00001 N)<

d-Q = K*d-q; /* element force increment */
Q = Q + d-61; /* update element force */
d-Dx = bx*d-Q; /* section force increment */
d-k = rx f fx*d-Dx; /* section deformation increment */
Dx = Dx + d-Dx; /* update section force */
dX= dx + d-dx; /* update section deformation */

/* get new section tangent flexibility f(x) */
/* and section resisting force DR(x) */
. details removed

DUx = Dx - DRx; /* section unbalanced force */
rx = fx*DUx; /* section residual deformation */
F = bx*fx*bx; /* new element flexibility */
K = l/F; /* new element stiffness */
s = bx*rx; /* element residual deformation */
d-q = -s;

3 /* end of while loop, j */

. details of updating data at loop j

PReCelel Cl1 = Q; /* element resisting force */
3

E
/* assemble structure resistant force */

PRCll C11=PReCllC11-PRe[21Cll;
PRC21Ell=PRe C21 Ill;

F
i details of storing response removed *.....

. ..*.. details of adjusting after yielding removed
b

. ...*.
L

3 /* end of for loop step */

Some points to note in the input file are:

1. The body of the while () loop is a step-by-step implementation of

equations 4.1 through 4.22. In fact, a user can write down the whole

algorithm formulation in the input file, and test it even before a finite

element is coded for ALADDIN.

2. This input file contains matrices defined with units, and a well defined

sequence of matrix operations. Physical units are carried through every

step of the calculation procedure. While the addition of units results in

some computational overhead, and slow down the speed, the verification

of consistent units provides a helpful check in the identification of errors.

The final results are plotted in figure 4.8, 4.9 and 4.10. We can see that after

the softening material starts to yield, the resistant force drops with further

increases in the bar elongation.

94

Figure 4.8: Force-Deformation History of Material Softening Element

4 6 8 10
Element Elogation 2 (cm)

Figure 4.9: ForceDeformation History of Elastic Element

F

95 [
I i,

25

20

E
8 15
8 u

10

E i
t

C ,k , I I I I

0 5 10 15 20 25 30 35 40 45
Total Elogation (cm)

Figure 4.10: Force-Deformation History of Composite Bar

Finite Element Implementation : Now that we know the algorithm works

well on a computationally difficult problem, the next step is to implement the

fiber element and the iterative solution procedure in ALADDIN’s finite element

library. The input statements for the whole solution procedure will be reduced

to:

for(step=l ; step <= total-step ; step=step+l)(

displ = displ + dp; /* get structure displacement */
ElmtStateDet(dp1; /* element state determination */
PR = InternalLoad(disp1); /* get structure resistant force */
UpdateResponse(); /* update element information */

3

The function ElmtStateDet 0 takes care of the step 2 to 15 in the algorithm

summary, and it has one matrix argument containing the structure incremental

displacements in global reference system. The function InternalLoad 0

calculate the structure resistant force in step 16. The function

UpdateResponse 0 saves information on the stress, strain, and material

properties for all elements at the current step.

i:
P

/

97

I

4.42 Cantilever Beam with Material Nonlinearity

Our second example in this chapter illustrates the behavior of a

two-dimensional cantilever beam constructed from a material having bi-linear

behavior. The beam is subject to a monotonically increasing point load at its

free end. The section dimension and material properties are shown in figure

4.11.

We use the fiber element from the ALADDIN’s element library to solve this

problem (see APPENDIX A for details about the fiber element). The

cantilever is modeled with 10 FIBER2D elements, each element contains 40

fibers and is cut into 5 integration sections. The mesh is shown in figure 4.12.

The following abbreviated input file shows the for-loop of the loading process.

ABBREVIATED INPUT FILE

/* Setup the response matrices */

total-step = 60;
tip_response=ColumnUnits(Zero(Ctotal_step+l,31),Clbf,in,radl);
displacement=Columnkits(Zero(Ctotd-node,61),bl);
rotation =Columnunits(Zero (Ctotal_node,61),Cradl);
curvature =Col~units(Zero(Ctotdl,e~t,6l),Crad/~l);

flag = 0; index = I;

for(step=1 ; step <= total-step ; step=step+l > <

/* Add incremental nodal load at each step */

dPk = [0 lbf, 1 lbf, 0 lbf*in I;
NodeLoad(total-node, dPk 1;
P-new = ExternalLoadO;
dP = P-new - P-old;
P-old = P-new;

/* Newton-Raphson Iteration */

while(L2Norm(dP) > 0.001 > <

dp = Solve(KS, dP 1;
displ = displ + dp;

98

D
I .

b = 1 in E = 20000 psi
h=4in EL = 0.1-E
L = 50 in BY = 500 psi

Figure 4.11: Cantilever Beam Subjected to Incremental Tip Load

Y

t

1 - 11: Node Number
@ -@ : Element Number

I I I I I
I I I I I
I I I I I

Integration Sections of Element Fiber Mesh of Element (Cross Section)

Figure 4.12: Element Mesh of Cantilever Beam

99

ElmtStateDet(dp 1;

KS = StiffO; /*Compute new stiffness */
PR = InternalLoad(displ 1; /*Compute internal load */
dP = P-new - PR; /*Compute unbalanced force*/

) /* end of while loop, dP converges */

/* Update element history data and save tip response */

UpdateResponseo;

/* store the tip response */

tip-response[step+Il Cl1 = P-new Cmax-dofl Cll;
tip-response[step+llC21 = displ Cmax-doflC11;
tip-response[step+ll C31 = displCmax_dof+ll IIll;

/* store all element results every IO steps */

flag = flag+l;
if(flag == IO > C

for(node=2 ; node<=total-node ; node=node+I > <
node-displacement = GetDispl(Cnodel,displ);
displacementCnode1 Cindexl = node-displacement CIICZI;
rotation[node][indexl = node-displacement[I] 131;

3
for(elmt-no=1 ; elmt-no<=total-elmt ; elmt-no=elmt-no+l)X

curvature[elmt-no][index]=(rotationCelmt-no+IlCindexl
- rotation[elmt_nol[indexl>/(5 in);

flag = 0; index = index+I;
3

) /* end of load step */

Points to note in input are:

1. A matrix tipresponse stores the applied external load, tip

displacement, and tip rotation for each step, including the initial

non-loaded status. A matrix displacement stores the nodal displacement

every 10 steps. A matrix rotation stores the nodal rotation every 10

steps.

100

2. We also allocate memory for a matrix curvature which holds the

element curvatures every 10 steps. We can easily calculate the curvature

for the element i by
6 - ei

Ki =
i+l

Li .

because curvature along an element is constant. Here Li is the length of

element i, 8i and #i+l are the end rotations, and Ki is the curvature for

the fiber element.

3. The nonlinear analysis method we are using here is Newton-Raphson

solution process as presented in section 4.3.3. We call the built-in

function ElmtStateDet 0 to perform all element state determinations, as

formulated in the previous section. Finally, the built-in function

UpdateResponse 0 updates the element stress, strain, and material

information after each load step finished.

The final results are plotted in figures 4.13 through 4.16. Our observations and

conclusions of this analysis are:

1. According to the equations:

0 MY =- and M=P.L
I

first yielding of the fibers occurs in the outer layers of the beam at the

fixed end when the tip load reaches 26.7Zbf. The coordinates of first yield

arez=Oinandy= f2in. However, the element is meshed so that the y

coordinate of the outer fiber is l.%n, therefore the extreme fiber first

yields at the tip log of 29.3Zbf.

101

2. Figures 4.13 and 4.14 show the cantilever tip deflection and rotation

versus applied tip load. Both curves are smooth even though the material

behavior is bi-linear. This behavior can be attributed to the gradual

spread of fiber yielding and from the exterior fibers towards the beam

centroid.

3. Figure 4.15 shows that the beam deflection grows rapidly after yielding.

4. In figure 4.16 we easily see which elements are elastic, which elements are

partially plastic, and which elements are totally plastic based on the

curvature change.

5. This fiber element includes effects of shear deformation. When

P = 201bf, for example, the calculated tip deflection is 7.85489in. The

tip load considerations indicate that the theoretical exact solution for the

tip loaded cantilever beam is

PL3 fsPL
vb = - = 7.8125in,

3EI
v, = GA - = O.O375in, vt = ?.+, + Vu, = 7.85in

where fs is the shear factor. If the relative shear deformation effects are

not considered (like in the FFCAME2D element), the relative numerical

error will be

err = 2 = 0.478%.
vt

The relative numerical error for this example is

err = ” - vt’ = 0.06237 0
vt

which is much less than the traditional plane frame element. In this

example the numerical error of FFLAMEZD is small because the beam is

102

slender (i.e., h/L < l/10). Shear deformation would make a much larger

contribution to the overall displacement for deep beams with large h/L

ratios.

103

60-

50-

40 -

!

j 30 -
I
L

20 -

lo-

OL
0

Figure 4.13: Tip Deflection Response

0.5 1
Tip rotation (rad)

Figure 4.14: Tip Rotation Response

5

104

Beam Distance X (in)

Figure 4.15: Nodal Deflection Along the Cantilever Beam

0.08

go.06

s
f 0.05
iii

$0.04

0
0 5 10 15 20 25 30 35 40 45

Beam Distance X (in)

Figure 4.16: Element Curvature Along the Cantilever Beam

105 I

CHAPTER 5

Procedures for Dynamic Analysis of Structures

5.1 Solution Methods for Dynamic Analysis of Structures

The purpose of this chapter is to show how ALADDIN and the fiber element

procedures developed in chapter 4 can be applied to the dynamic time-history

analysis of multi-degree of freedom structural systems. We will assume that the

behavior of these systems is governed by solutions to the family of matrix

equations:

M@) + d(t) + K(X(t))X(t) = P(t). (5.1)

Here M, C, and K are (n x n) mass, damping, and stiffness matrices,

respectively. P(t), X(t), i(t), and X(t) are (n x 1) external load, displacement,

velocity, and acceleration vectors at time t. The notation K(X(t)) indicates

that the stiffness matrix will be a function of the system displacements.

Because analytical solutions to equation 5.1 are intractable for all but the

simplest systems and loading conditions, in practice, numerical solution

procedures must be relied upon for time-history computations. Three of these

methods are presented in the following subsections.

5.1.1 Modal Analysis

Let <P be a (n x p) nonsingular matrix (p 5 n), and Y(t) be a (p x 1) matrix of

time-varying generalized displacements. The objective of the method of modal

107

analysis is to find a transformation

x(t) = @Y(t) (5.2)

that will simplify the direct integration of equations (5.1). The modal

equations are obtained by substituting equations (5.2) into (5.1), and then

pre-multiplying (5.1) by aT. The result is:

aTM@rii(t) + @‘C@+(t) + aTK@Y(t) = 4DTp(t). (5.3)

The notation in (5.3) may be simplified by defining the generalized mass

matrix as M* = aTMa, the generalized damping matrix as C* = GTC@, the

generalized stiffness matrix as K* = aTKQ, and the generalized load matrix

as P*(t) = aTP(t). Substituting these definitions into equation (5.3) gives

M*i;(t) + C*r;(t) + K*Y(t) = P*(t). (5.4

The transformation matrix @ is deemed effective when the bandwidth of

matrices in (5.4) is much smaller than in equations (5.1). From a theoretical

viewpoint, there may be many transformation matrices 9 which will achieve

this objective - a judicious choice of transformation matrix will work much

better than many other transformation matrices, however.

Example : To see how the method of modal analysis works in practice,

consider the free vibration response of an undamped system

MT?(t) + KX(t) = 0, (5.5)

where M and K are (n x n) mass and stiffness matrices. We postulate that the

timehistory response of (5.5) may be approximated by a linear sum of p

108

harmonic solutions

where gi (t) is the ith component of Y(t), and $i is the ith column of @. The

amplitude and phase angle for the ith mode are given by Ai and ,Bi, respectively

- both quantities may be determined from the initial conditions of the

motion. We solve the symmetric eigenvalue problem

K@ = M<PA

for @ and A is a 0, x p) diagonal matrix of eigenvalues

(5.7)

(5.8)

It is well known that the eigenvectors of problem (5.6) will be orthogonal to

both the mass and stitiess matrices. This means that the generalized mass

and stiffness matrices will have zero terms except for diagonal terms. The

generalized mass matrix takes the form

M* =

I ml* 0 . . . 0

0 m2* . . . 0
. . . *. . . .

1 0 O...m,* 1

and the generalized stiffness looks like

K* =

w12ml* 0 . . . 0

0 ws2m2* . . . 0
. * .

0 0 . . . wn2mg*

109

(5.9)

. (5.10)

If the damping matrix, C, is a linear combination of the mass and stiffness

matrices, then the generalized damping matrix C* will also be diagonal. A

format that is very convenient for computation is:

c* =

%w-h* 0 . . . 0

0 2&wgrn2* . . . 0
. . . -. . . .

0 0 . . . %aw-n,*

, (5.11)

where & is the ratio of critical damping for the ith mode of vibration.

For the undamped vibration of a linear multi-degree of freedom system the

eigenvalue/vector transformation is ideal because it reduces the bandwidth of

M*, C*, and K* to 1. In other words, the eigenvalue/vectors transform

equation (5.1) from n coupled equations into p (p < n) uncoupled single

degree-of-freedom systems. The required computation is simplified because the

total time-history response may now be evaluated in two (relatively simple)

steps:

1. Computation of the time-history responses for each of the p single

degree-of-freedom systems, followed by

2. Combination of the SDOF’s responses into the time-history response of

the complete structure.

A number of computational methods can be used to compute the time

variation of displacements in each of the single degree of freedom systems.

From a theoretical viewpoint, it can be shown that the total solution (or

general solution) for a damped system is given by:

dt) = fW sin(widt) + Ci(t) COS(W&

110

(5.12)

where ‘did = ~~41 - tf is the damped circular frequency of vibration for the ith

mode. The time variation in coefficients &(t) and C(t) is given by:

+ e-w(o) + 1
wd

-&-& Jo” P(T)eciwiT cos(w~dr)&] (5.13)

ci(t) = eveiwit - & /d” P(T)diwiT sin(widr)dT
i 7. I

where yi(O) and &(O) are the initial displacement and velocity for the ith mode.

If the details of P(T) are simple enough, then analytic solutions to (5.12) may

be possible. For most practical problems (e.g., earthquake ground motions),

however, numerical solutions to &(t) and Ci(t) must be relied upon.

Numerical Example : We demonstrate the method of modal analysis by

computing the time-history response of a four story building structure subject

to a time-varying external load applied at the roof level. Details of the shear

building and external loading are shown in figures 5.1 and 5.2.

We obtain a simplified model of the building by assuming that all of the

building mass is lumped at the floor levels, that the floor beams are rigid, and

that the columns are axially rigid. Together these assumptions generate a

model that is commonly known as a shear-type building, where displacements

at each floor level may be described by one degree-of-freedom alone. Only four

degrees of freedom are needed to describe total displacements of the structure.

Details of the mass and stiffness matrices are shown on the right-hand side of

figure 5.1. From a physical point of view, element (i, j) of the stiffness matrix

corresponds to the nodal force that must be applied to degree of freedom j to

produce a unit displacement at degree of freedom i, and zero displacements at

all other degrees of freedom. Structural damping in the shear building is

ignored.

111

k-1 = 400 kN/m. = 400 kN/m.

x-2
STIFFNESS =

-800 2400 - 1600

-1600 4000 -24&J

-2400 5600
k-2 = 800 kN/m. k-2 = 800 kN/m. L -I

.
x-3

k-3 = lux) kN/m. k-3 = 1200 kN/m.

- x-4

MASS =

k-4 = 1600 kN/m. k-4 = 1600 kN/m.

-800 1

1500

3000

3aw

Figure 5.1: Schematic of Shear Building

4500

Figure 5.2: Externally Applied Force (kN) Versus Time (set)

112

-1 I

T = 0.58 SEC

MODE 1

-1 1

T = 0.26 SEC

MODE 2

-1 1

T = 0.19 SEC

MODE 3

-1 1

T = 0.14 SEC

MODE 4

Figure 5.3: Mode Shapes and Natural Periods for Shear Building

Figure 5.3 summarizes the mode shapes and natural periods of vibration for

each of the modes in the shear building. The shear building has a fundamental

period of 0.5789 seconds.

Dynamic behavior of the shear building is generated by a horizontal

time-varying force (see figure 5.2 for the details) applied at the roof level

degree of freedom. We have deliberately selected the time-scale of the applied

force so that it has a period close to the first natural period of the structure

(i.e., 0.5789 seconds versus 0.6 seconds period for the applied load).

In the input file that follows, (2 x 2) generalized mass and stiffness matrices are

generated by first computing the (4 x 2) transformation matrix ‘a

corresponding to the first two eigenvectors in the shear building. The elements

of the generalized mass and stiffness matrices are zero, except for diagonal

terms. Each of the decoupled equations is then solved as single

degree-of-freedom system.

113

ABBREVIATED INPUT FILE

/* Compute first two eigenvalues, periods, and eigenvectors */

no-eigen = 2;
eigen = Eigen(stiff, mass, [no-eigen]);
eigenvalue = Eigenvalue(eigen);
eigenvector = Eigenvector(eigen1;

/* Compute generalized mass, stiffness and load matrices */

EigenTrans = Trans(eigenvector);
Eigenmass = EigenTrans*mass;

Mstar = Eigenmass*eigenvector;
Kstar = EigenTrans*stiff*eigenvector;
Pstar = EigenTrans*eload;

/* Mode-Displacement Solution for Response of Undamped MDOF System */

for(i = 1; i C= nsteps; i = i + 1) 1

/* Cl1 : Update external load */

time = time + dt;
if(time <= 0.6 set) then <

eloadC11 Cl] = myloadCi+llC23;
3 else X

eload[l][l] = 0.0 kN;
3

Pstar-new = EigenTrans*eload;
D-Pstar = Pstar-new - Pstar;

/* r.21 : Retrieve modal initial conditions */

Mdisp = Eigenmass*disp;
Mvel = Eigenmass*vel;
for(r=l ; r<=no-eigen ; r=r+l 1 C

Mdisp[rl[l] = MdispCrlC11/MstarCrlCrl;
MvelCrl Cl] = Mvel[r][i]/MstarCrlCrl;

3

/* c31 : Compute new generalized displacement for each SDOF system */
/* : Using piecewise-linear interpolation of excitation */

for(r-1 ; rC=no-eigen ; r=r+l > C
W = sqrtceigenvalue Crl 111);
wt = w*dt;

114

Mdisp-new[r][l] = Mdisp[rl[l]*cos(wt> + MvelCrlCl]*sin(wt>/w
+ PstarCrlC11/KstarCrlCrl*(1-cos(wt) >
+ D-PstarCrl Cl1 /Kstar Crl Crl*(wt-sin(wt) >/wt;

Mvel-new Crl Cl1 = w*(-Mdisp[r] Cll*sin(wt) + MvelCrl Cl1*cos(wt>/w
+ Pstar [rl Cll/KstarCrlCrl*sin(wt~
+ D-Pstar/KstsrCrlCrl*(1-cos(wt))/wt 1;

3

/* c41 : Update new response */

Pstar = Pstar-new;
disp = eigenvector*Mdisp-new;
vel = eigenvector*Mvel-new;

3

Some points to note in the input file are:

1. Overall behavior of the system is represented by (4 x 4) global mass and

stiffness matrices. A (4 x 2) transformation matrix, @, is computed by

solving equation (5.7) for the first two eigenvectors. It follows that the

generalized mass and stiffness will be (2 x 2) diagonal matrices.

2. The main loop of our modal analysis computes the time-history response

via piecewise-linear interpolation of the excitation for the two decoupled

equations. However, as we will see in the next section it is

computationally simpler to use the method of Newmark integration to

solve both sets of decoupled equations together.

The building system response is summarized in figures 5.4 through 5.6. Points

to note are:

1. Figures 5.4 and 5.5 show the time-history response for the first and

second modes, respectively. Notice that the amplitude of vibration for

the first mode is an order of magnitude larger than for the second mode.

You should also observe that after the external load finishes at time = 0.6

seconds, the amplitude of vibration is constant within each mode, with

the natural periods of vibration closely matching the eigenvalues/periods

shown in figure 5.3.

2. The combined first + second modal response is shown in figure 5.6.

116

-v
0 1 2 3 4 5

Time (seconds)

Figure 5.4: Modal Analysis : First Mode Displacement of Roof (cm) Versus
Time (set)

0.6-,’

0.4 -

g 0.2-..

E
E Ol-
8

m

g-0.2-

-0.4 -

-0.6 -

,: .:

._._..~.____....._..... :

. , . . , (__._..___.......

. . .

~

-0.8
0

I
1

I I
2 3 4 5 6

Time (seconds)

Figure 5.5: Modal Analysis : Second Mode Displacement of Roof (cm) Versus
Time (set)

117

I , I

1
I
1

i-

.:.

.:

1

L I

1

Time (s3econds)
4 5

il ,.

.........

~

.........

I 11 ._:
J

6

Figure 5.6: Modal Analysis :
Versus Time (set)

First + Second Mode Displacement of Roof (cm)

118

5.1.2 Newmark Algorithm Method

An important limitation of mode-superposition methods (e.g., see the

calculation for the response of linear MDOF systems with proportional

damping) is their inability to compute the nonlinear time-history response of

structural systems. Step-by-step numerical integration procedures must be

used instead.

Newmark integration methods approximate the time-dependent response of

linear and nonlinear second-order equations by insisting that equilibrium be

satisfied only at a discrete number of points (or time steps).

ii(t) At i

=+(i.i i + ii i+l)

9

“qUi+l ai fj “flfii+l

ti ti+l ti t i+l ti t&l .

Figure 5.7: Numerical Integration Using Average Acceleration Method

If (t) and (t + At) are successive time steps in the integration procedure, the

two equations of equilibrium that must be satisfied are:

MJf(t) + CA(t) + KX(t) ,= P(t), (5.15)

MJt(t + At) + Ck(t + At) + KX(t + At) = P(t + At). (5.16)

119

Now let us assume that solutions to equation (5.15) are known and (5.16)

needs to be solved. At each time step there are 3n unknowns corresponding to

the displacement, velocity, and acceleration of each component of X. Since we

only have n equations, the natural relationship existing between the

acceleration and velocity, and velocity and displacement:

A(t+At) = R(t) + Jr(:;t)t+An Z(T)ch,

X(t+At) = x(t) + J;TAt) k(T)&,

(5.17)

(5.18)

must be enforced to reduce the number of unknowns to n. X(T) is an unknown

function for the acceleration across the time step. The Newmark family of

integration methods assume that:

1. Acceleration within the time step behaves in a prescribed manner, and

2. The integral of acceleration across the time step may be expressed as a

linear combination of accelerations at the endpoints.

Discrete counterparts to the continuous update in velocity and displacement

are:

k(t + At) = k(t) + At[(l - y)*(t) + rz(t + At)] (5.19)

X(t + At) = X(t) + At*(f) + $[(I - a/,@(t) + 2&t(t + At)] (5.20)

with the parameters y and ,B determining the accuracy and stability of the

method under consideration. The equations for discrete update in velocity and

displacement are substituted into equation (5.16) and rearranged to give:

tiit(t + At) = i)(t + At) (5.21)

120

where

ti = M + yAtC + ,BAt2K (5.22)

and

@(t+ At) = P(t + At) - Ck(t) - KX(t) - At [K] ri-(t) -

At[(l - y)C + +(l - 2/?)K]k(t). (5.23)

It is well known that when y = l/2 and ,O = l/4, acceleration is constant

within the time step t E [t, t + At], and equal to the average of the endpoint

accelerations. In such cases, approximations to the velocity and displacement

will be linear and parabolic, respectively, as shown in figure 5.7. Moreover, this

discrete approximation is second order accurate and unconditionally stable.(14)

When y = l/2 and ,O = l/6, acceleration is linear within the time step

t E [t, t + At], and passes through the endpoint accelerations. While the second

discrete approximation is more accurate than the former method, it is only

conditionally stable and will diverge if it is applied to modal response

components having periods of vibration less than 1.8 times the integration

interval.Q2)

Numerical Example : We demonstrate the Newmark algorithm method by

repeating the linear time-history computation defined in the previous example.

Details of the shear building and external loading are shown in figures 5.1 and

5.2.

An eight-part input file is needed to define the mass and stiffness matrices,

external loading, and solution procedure via the method of Newmark

Integration. The step-by-step details of our Newmark Algorithm are:

1. Form the stiffness matrix K, the mass matrix M, and the damping

matrix C. Compute the effective mass matrix lJ&.

2. Initialize the displacement X(0) and velocity X(0) at time 0.

Backsubstitute X(0) and X(0) into equation (5.15), and solve for X(0).

3. Select an integration time step At, and Newmark parameters y and ,0.

4. Enter Main Loop of Newmark Integration.

5. Compute the effective load vector @(t + At).

6. Solve equation (5.21) for acceleration %(t + At).

7. Compute k(t + At) and X(t + At) by backsubstituting X(t + At) into

the equations for discrete update in velocity and displacement.

8. Go to step 4.

The following abbreviated input file illustrates step 1, and the main loop of the

Newmark integration, which is steps 4 through 8.

ABBREVIATED INPUT FILE

/* Compute (and compute LU decomposition) effective mass */

MASS = mass + stiff*beta*dt*dt;
111 = Decompose(MASS);

/* Neumsrk Iteration Loop */

for(i = 1; i <= nsteps; i = i + 1) <

/* Cl1 : Update external load, and compute effective load */

time = time + dt;
if(time <= 0.6 set > then <

eload Cl1 Cl3 = myload[i+l] [2];
) else (

122

eload[l][Il = 0.0 kN;
3

R= eload - stiff*(displ + vel+dt + accel*(dt*dt/2.0)*(1-2*beta));

/* Cal : Compute new acceleration, velocity and displacement */

accel-new = Substitution(lu,R);
vel-new = vel + dt*(accel*(l.O-gamma) + gamma*accel-new);
displ-new = displ + dt*vel

+ ((I - 2*beta) *accel + 2*beta*accel_new)*dt*dt/2;

/* c31 : Update new response */

accel = accel-new;
vel = vel-new;
displ = displ-new;

3

Figure 5.8 is time-history plot of the roof level displacement. The cu?ve is

virtually identical to that computed with the modal analysis method.

1 2 3 4 5 6

Figure 5.8: Newmark Integration : Lateral Displacement of Roof (cm) Versus
Time (set)

123

5.1.3 Wilson-8 Method

For certain types of multi degree-of-freedom structures, such as models of

multi-story buildings idealized to have only one degree of freedom per story,

the Newmark method with linear acceleration across the time steps is an

effective way of computing linear and nonlinear time-history responses. For

finite element idealizations of structures having more complex geometries, this

method is sometimes unsatisfactory because of the very short time increment

required to avoid numerical instability. Unconditionally stable methods are

required instead.

A number of unconditionally stable step-by-step methods have been developed

for dynamic response analysis (see references 114, 121). One of the simplest and

best of these is the Wilson-B method.

wr

/?I AUr(t i)
AsOr(t i)

Or(t i) ii,(t i+l) tL(t i + S i)

*t
ti t icl

13

Ati +
Si = 8 Ati -I

Figure 5.9: Linear Acceleration Assumption of Wilson-0 Method

The basic assumption of the Wilson-0 method is that each component or of the

acceleration vector fi varies linearly with the time over an extended time step

si = 8Ati as indicated in figure 5.9. The Wilson-0 method is unconditionally

stable only for 8 > 1.37.(12714y50) The optimum value of 0 is 1.420815.

124

1000 kg

Hz=3m
k.__ - .._.___.... -----.
./

_..,” . ..-..-.-.....--..--..

,.31=4m /.c’“--““‘-““....‘.------.l.......,
~ - . . .f
\.... ..i

Figure 5.10: Three-Dimensional Two-Story Lumped Mass Pier

3

0 2

I- I
I I- 30 @ lcm --I
1 Cross Section of Element
I
I Fiber Mesh
\
\

-1 0 1
-2

--X i j
j 1.0

Element Mesh Elevation View of a Fiber Location of Integration Points

Figure 5.11: Element Mesh of Two-Story Lumped Mass Pier

i
-i

2
3
4
5
6

8 0.63
9 0.82

1c 0.94

-1.0
-0.94
-0.83
-0.63
-0.40

-0.14

0.14

0.40

125

Numerical Example : In this example we compute the nonlinear

time-history response of a two story lumped mass pier subject to earthquake

ground motions simultaneously applied in the IC and y directions. The Wilson-6

algorithm is used for numerical integration of the underlying equations of

equilibrium.

The pier is modeled with two FIBERSD elements with 30 x 40 = 1200 fibers

and 10 Gauss-Lobatto integration points for each element. The element mesh

is shown in figure 5.11. The section dimension and material properties are

shown in figure 5.10. The finite element model has 3 nodes and 2 fiber

elements. The boundary conditions are full fixity at the base. Axial

deformations (u,) and torsional rotations (Qz) in each element are likewise

assumed to be zero. After the boundary conditions are applied, the model has

only 8 degrees of freedom (d.o.f.). And this is in spite of the 2400 fibers used to

model the pier deformations.

The total mass of the first floor is 1500 kg. The second floor has mass 1000 kg.

We assume for the purposes of this analysis that each floor has the dimensions

shown in the top right-hand corner of figure 5.10. This effect includes the

rotational inertias of both floors, namely:

J, = L712, JY = P/12,
Mjz = MS Jz, Mjy = MS Jy,

The lumped mass matrix of each floor in local coordinates is:

massi =
Mi

M.. - 3XZ

126

1940 EL CENTRO SOOE RECORD, X-Dir

Time (set)

1940 EL CENTRO S9oW RECORD, Y-Dir

-0
5

! I I
1 2 3 4 Time’(sec) 6 7 a 9 10

Figure 5.12: 1940 El Centro Earthquake Record

The time-history response of the two-story lumped mass pier structure is

computed for ground motion accelerograms simultaneously applied in the x

and y directions. The ground motion accelerograms are lO-second samples

extracted from the 1940 El Centro record by Balling et a1..(g) See figure 5.12.

The standard way of solving this problem is to note that the total displacement

vt may be expressed as the sum of the relative displacement v and the

pseudo-static displacements us that would result from a static-support

displacement. That is:

d =v+vs.

The pseudo-static displacements may be conveniently described by an influence

vector r representing the displacements resulting from a unit support

displacement. For a planar structure that only has horizontal degrees of

127

rY2 d
UY2

6 +j+lx2 %f b+
w

d i rx2 TX1

UYl

-@+uxl d i
G+
7 3 2 5 1

Figure 5.13: Global DOF for Two-Story Lumped Pier

freedom, ws = r:2rg , where 2rg is the ground displacement and

the influence vector r simply contains a column of ones.(r2) A slightly modified

version of this procedure is needed for the multi-component time-history

analysis. Using rz to represent the influence coefficient vector r in the x

direction, and ry in the y direction, the effective-force vector generated by the

earthquake ground motion components is:

If the structural degrees of freedom are as shown in figure 5.13, then a unit

displacement in the x direction affects only d.o.f. 1 and 5, and a unit

displacement in the y direction affects only d.o.f. 2 and 6. Hence

128

r, = and rY=

The following abbreviated input file shows the essential details of computing

the multi-component time-history analysis with the Wilson-O method.

ABBREVIATED INPUT FILE

/* Compute initial stiffness and mass matrices */
stiff = StiffO;
mass = Mass(Cll);

/* Manually add lumped mass and rotational inertial to mass matrix. */
dof = GetDof(C21);
massldof CllC11lCdof[llClll = Ml;
massCdof[llE211~dofCllC2lI = Ml;
massCdofCl1 C4.11 ldof [II C4Jl = Mjxl;
massCdof CllC511 Cdof CllC511 = Mjyl;
dof = GetDof([31);
massCdof Cl1 Cl11 [dof [II Cl11 = M2;
massCdof[11[211Cdof[11[211 = M2;
massCdof CllC411 Cdof[ll C411 = Mjx2;
massCdof [1lC5llCdofCll C511 = Mjy2;

mass-inv = Inverse(mass);

/* Setup Rayleigh damping and damping matrix */
rdamping = O.d5;
A0 = 2*rdamping*wl*w2/(wl+w2);
Al = 2*rdamping/(wl+w2);
damp = AO*mass + Al*stiff;,

/* Setup initial displacement, velocity and acceleration */
NodeLoad(1, [0 kN, 0 kN, 0 kN, 0 kN*m, 0 kN*m, 0 kN*ml 1;
P-ext = ExternalLoadO;
displ = Solve(stiff, P-ext 1;
velocity = displ/(l set);
accel = velocity/(1 set);

/* Setup the influence vector in both dir-X and dir-Y */

129

I-X = displ/(l m); ry = displ/(l m);
accel-dir-x = I; accel-dir-y = 2;
for(i=l ; i<=total-node ; i=i+l > {

dof = GetDof(Ci.1);
if(dofCllEaccel-dir-xl>O) X rxCdof[llCaccel-dir-xl1 Cll=l; 1
if(dof[l][accel-dir-y]>O) (ry[dof[11Cacce1-dir~y11[11=1; 3

3

/* Define theta value for Wilson-theta method */
theta = 1.420815;
ds = theta*dt;

/* Wilson-theta time-history analysis */

for(stepno=l ; stepno <= total-stepno ; stepno=stepno+l) (

/* Cl1 : Compute effective incremental loading */

time = time + dt;
if(time <= quake-time) then (

P-ext = -mass*(rx*ground-accel-xCstepnol[l]
+ ry*ground-accel_yCstepnolCll);

3 else <
P-ext = -mass*(rx*(O.O m/sec/sec)>;

3

dPeff = theta*(P-ext-P-old) + mass*((6/ds)*velocity+3*accel)
+ damp*(3*velocity+(ds/2)*accel);

/* c21 : Compute effective stiffness from tangent stiffness */
Keff = stiff + (3/ds)*damp + (6/ds/ds)*mass;

/* c31 : Solve for estimated delta-displacement */
dps = Solve(Keff, dPeff);

/* C41 : Compute estimated displacement, velocity and acceleration */
ds-accel = (6/ds/ds)*dps - (6/ds)*velocity - 3*accel;
new-velocity = velocity + dt*accel + (dt/2/theta)*ds_accel;
new-displ = displ + dt*velocity + (dt*dt/2)*accel

+ (dt*dt/6/theta)*ds_accel;

/* E51 : Check material yielding and compute new stiffness */
dp = new-displ - displ;
ElmtStateDet(dp);
stiff = Stiff();

/* CSI : Compute new internal load, damping force, acceleration */
Fs = InternalLoad(new-displ);
Fd = damp*new-velocity;
new-accel = mass-inv*(P-ext-Fs-Fd);

130

**.*.. details of energy balance calculation explained later

/* [71 : Update histories for this time step */

UpdateResponse();

P-old = P-ext;
displ = new-displ;
velocity = new-velocity;
accel = new-accel;

1

The first and second floor displacements in the x and y directions are plotted

in figure 5.14 and figure 5.15, respectively.

-0.15
0

t I
5 10 1:

Time (set)
5

Figure 5.14: Earthquake Response for Two-Story Pier in x Direction

5 10
Time (set)

Figure 5.15: Earthquake Response for Two-Story Pier in y Direction

132

5.2 Energy Evaluation

5.2.1 Strain Energy

The concept of strain energy is of fundamental importance in applied

mechanics.(ig) To illustrate the basic ideas, a gradually increasing static load is

applied on a prismatic bar. See figure 5.16.

P

Figure 5.16: Prismatic Bar Subjected to a Statically Applied Load

Application of the load produces strains in the bar, and the effect of these

strains is to increase the energy level of the bar itself. Strain energy is defined

as the energy absorbed by the bar during the loading process. It is equal to the

work done by an external load moving through the displacement u, provided no

energy is added or subtracted in the form of heat. Therefore,

un = J 0
Un P(u)du, (5.24)

where Un is the strain energy at load step number n.

Sometimes strain energy is referred to as internal work to distinguish it from

external work. When the force P is slowly removed from the bar, the bar will

shorten and either partially or fully return to its original length depending

upon whether the elastic limit has been exceeded. Thus, during the unloading

procedure, some or all of the strain energy of the bar may be recovered in the

form of work.

The load-deflection relationship for a typical nonlinear system is shown in

figure 5.17. During loading, the work done is equal to the area under the curve

133

P B
4 Inelastic

- Strain
Energy B Elastic

- strain
Energy

0 D c 11

Figure 5.17: Elastic and Inelastic Strain Energy

(i.e., area OABCDO). When the load is removed the load-deflection diagram

follows line BD. A permanent elongation OD remains when point B is beyond

the elastic limit. Thus, the elastic strain energy recovered during unloading is

represented by the shaded triangle BCD. Area OABDO represents energy that

is lost in the process of permanently deforming the bar. This energy is known

as the inelastic (or plastic) strain energy.(lg)

Now let us define IGs = elastic tangent stiffness. The elastic strain energy that

can be recovered in the unloading process is:

u
1 P2

elastiqn = AreaBcD = - - pz.
2 ks

Approximating equation 5.24 by the trapezoidal rule gives:

un = ATeaoABcDo = i&-l+ ;(pn_, + P,)du,.

From figure 5.17 and the principle of conservation of energy, it follows that

u, = ~eEastic,n + Uplastic,n-

The energy that is lost in the process of permanently deforming the bar is the

inelastic (plastic) strain energy, and it can be obtained by

U plasticp = ATeaOABDO = un - UeZastic,n-

:
I

Numerical Example : To illustrate how ALADDIN can be used to calculate

the strain energy in a nonlinear system response, a nonlinear SDOF spring

system is presented in figure 5.18. The lumped masses are ml = l.Okg and

m2 = l.Okg at degrees of freedom 1 and 2 respectively. cl = 1.5N.sec/m and

c2 = l.ON.sec/m represent the coefficient of viscous damping at degrees of

freedom 1 and 2 respectively. Springs 1 and 2 both have a bi-linear

force-displacement relationships which follow the kinematic hardening rule.

The undeformed springs start out with an initial stiffness ks that lasts until the

load exceeds the yield force fv. The tangent stiffness then changes to kt. When

the loading is reversed, the tangent stiffness switches back to the initial stiffness

ks until the yielding reappears. The elastic force-displacement range is 2. fv.

This system is subjected to the time-varying load shown in figure 5.19. Our

analysis will be divided into two parts. First we assume that each time step is

very long and the load is slowly applied during the load step - in other words,

the externally applied loads are static, and the underlying equations of

equilibrium are not influenced by damping or inertial effects. The second part

of our analysis will account for dynamic effects.

In the static analysis, a Newton-Raphson procedure is used to calculate the

load-deflection response of this spring system. We also calculate the elastic and

plastic components of energy of the spring elements. Except for the spring

properties and strain energy calculation, the input file is almost the same as for

the composite bar example presented in the preceding chapter. The

abbreviated input file is:

ABBREVIATED INPUT FILE

/* allocate the matrices fpr storing energy calculations */

kl I k2 I

r; cl ml m2 bP
lL-

KC2

0‘
t-t -

I

ksl = 2.0 N/cm ks2 = 1.5 N/cm
ktl = 0.8 N/cm kt2 = 0.5 N/cm
fyl=18N fy2=15N
ml = 1.0 kg m2 = 0.5 kg
Cl = 1.5 Nsec/m c2 = 1 .O N set/m

Figure 5.18: Nonlinear SDOF Spring System

20 - . . r

-g 4 -

8

4 -10 -

-15 -

-20 -

25

.:.

.;.

.j_

0 I

. I -

. . ; . . ; . _

-25L 8 , 4 0 I
0 20 40 50 80 100 120 140 150 180 200

Step Number

Figure 5.19: Varying Load Applied on Spring System

136

system-energy = CoIumuDnits(Matrix([total_st@p+l,41), CJOUI >;
element-energy = CoIumnUnitsC Matrix([total_step+l,41), CJoul >;

/* Increase External Load */
for (k=I; k<=total,step ; k=k+l)
x

/* define force increment for each step */

if(kc=20) { d-P = [ON; lN1; 3
if(k>20 && kc=60) < d-P = -CO N; 1 Nl; 3
if(k>60 L& k<=105) (d-P = [O N; 1 N]; 3
if(k>l05 && kc=155) i d-P = -CO N; 1 Nl; 3
if(k>l55 && k<=190) < d-P = CO N; 1 Nl; 3
if(k>l90 6& k-+200) < d-P = -CO N; 1 Nl; 3
if(k>200 > < d-P = CON; ONI; 3
P = P + d-P;

element,energyCk+llCll = element-energy[kl Cl];
element-energyCk+llC31 = element-energyCklC31;

/* i-th Newton-Raphson Iteration */
indexCl1 Cl] = 1; indexC21[11 = 1;
err = to1+1;
while(err > to1)
c

d-p = Solve(BigK,d-P);
p = p + d-p;

/* state determination for each element */

for(ele=l;ele<=2;ele=ele+l)
-I
. details about retrieving data from (j-1)

q = q + d-q;

/* element converge, j */

while(abs(DUx) > 0.00001 N)
c details of checking element convergence 3

.*.... details of updating data at loop j o.....

/* energy calculations for each element ele */

element-energy[k+ll[2*ele-11 = element-energyCk+llC2*ele-11
+ 0.5*(Q-savedcelel Cl1 +Q)*(q-q_savedCelelCll);

element-energyCk+ll C2*elel = 0.5*Q*Q/Ks[elel Cll;
3

137

/* assemble structure resistant force */
. details of assembling structure resistant force

/* assemble new structure stiffness */
. details of assembling new structure stiffness

d-P = P - PR;
err = L2Norm(d-P);

3 /* i-th iteration in Newton-Raphson while loop */

...... details of storing response removed

...... details of updating element history

/* Reassemble the System Energy */

system,energy[k+l][l] = system-energy[k][l]
+ 0.5*(resultCk+ll Cl1 +resultCkl Cl1)*(result [k+ll [al-result[k][2]);

system-energy[k+l][2] = element-energy Ck+llCll +element-energyCk+llC3];
system_energy[k+l][3] = element-energy~k+ll~2l+element,energyCk+llC4];
system_energyCk+llC4] = system-energyCk+ll C21 - system_energy[k+ll[3];

3 /* end of for loop step */

In the input file, the matrix element-energy stores the element energy for all

loading steps. The first column stores the internal work of element 1. The

second column stores the element elastic strain energy of element 1. The third

column stores the internal work of element 2. The fourth column stores the

element elastic strain energy of element 2. A second matrix system-energy

stores the system energy for all of the loading steps. The first column stores

the total external work done by the system. The second column stores the

total internal work of the system (it is the sum of internal work in the

elements). The third column stores the total elastic strain energy of the system

(it is the sum of elastic strain energy in the elements). The fourth column

stores the total plastic strain energy of the system (again, this quantity is the

sum of plastic strain energies in the elements).

The load-displacement and energy results are plotted in figures 5.20 through

138

5.25. In the energy plots, you should observe that the plastic energy dissipation

remains constant during periods of load until another yield point is reached.

Q: -,. _........... i _....

-25’ y ’ I I 1 I , I
-20 -15 -10 -5 0 5 10 15

Element Elongation 1 (cm)

Figure 5.20: Load-Deflection Diagram of Spring 1

.:. -

/ !
............-

3
3

5 _ /. jl....

/

.

a
f

o-

Y

............... j ._ j j..

5

.I-

u
2

-5 _ i.. j.. j..

%
a-,o _ i . .._ [............... i /................ _.

-20 -10 0 10 20 30
Element Elongation 2 (cm)

Figure 5.21: Load-Deflection Diagre of Spring 2

140

-50 -40 -30 -20 -10 0 10 20 30 40
Total Elongation (cm)

Figure 5.22: Load-Deflection Diagram of System

5 I i : i :
; wy 1

.....,; ,_.,._.._; .___.....; . i j . . . i j
1)I : : ; : : iIi\I I .+ (&,&ic), ; ;

54
3.

...... +.(W~lastic)l.; ,........ i i
&(Wiict)l i

!A ; ! /)A+j
‘;...ii

Step Number

Figure 5.23: Strain Energy Plot of,Spring 1

141

4

t

.i i :.. i . . . ,‘l.; i ..,...... .j__. . .._....

; ;?Q..L; j j j ;{

._ ..;y-. j, j.. &. __. ,; .._._.__ _
,’ \

.! ‘\ : : , \
1: : ., ‘1 ! I /’ :‘,

’ : :
7. /’ ‘. ! , . . ; /.x.

0 20 40 60 80 100 120 Lo 160 180 200
Step Number

Figure 5.24: Strain Energy Plot of Spring 2

20 I , , I
I I I

Step Number

Figure 5.25: Strain Energy Plot of System (Static)

142

Dynamic Analysis of Nonlinear SDOF System : We now repeat the

system analysis assuming that the load is incremented in time steps of only

0.01 second. The total loading time is 2 seconds. The system response is

computed for a total of 4 seconds, however, using the Newmark algorithm with

average acceleration across the time steps. We also calculate the strain energy,

elastic and plastic energies of the spring elements, and the natural periods of

the system throughout the dynamic analysis. The abbreviated input file is

shown below:

ABBREVIATED INPUT FILE

/* assemble initial structure tangent stiffness matrix BigK'*/
BigK = [ksl+ks2, -ks2; -ks2, ks2 1;

/* assemble mass matrix and damping matrix */
BigM = 1: ml, 0 kg; 0 kg, m2 1;
BigC = I: clic2, -c2; -c2, c2 I;

M-inv = Inverse(BigM);

/* initial time = Osec conditions */
total-step = 400;
dt = 0.01 set;
time = 0 set;

/* Setup initial velocity and acceleration */
P =[Ocm;Ocml;
vel = p/Cl set) ;
accel = vel/ (1 set> ;

/* allocate the matrices for storing output history */

result = ColumnUnits(Matrix([totaLstep+l,8]), [N,cm,cm,cm,N,N,sec,secl);
element-energy = ColumnUnits(Matrix(Ctotal_step+l,41), CJoul 1;

/* compute dynamic periods */
eigen = Eigen(BigK, BigM, 121);
eigenvalue = Eigenvalue(eigen);

/* increase external load, structure determination */
for (k=l; k<=total-step ; k=k+l >
I.

time = time + dt;

143

/* define force increment for each step */
. details of defining dP

/* Compute effective incremental loading */
dPeff = d-P + ((4/dt)*BigM + 2*BigC)*vel + 2*BigM*accel;

/* Compute effective stiffness from tangent stiffness */
Keff = BigK + (2/dt)*BigC + (4/dt/dt)*BigM;

/* Solve for d-displacement, d-velocity */
d-P = Solve(Keff, dPeff);
d-v = (2/dt)*d-p - 2*vel;

/* Compute displacement, velocity */
new-p = p + d-p;
new-vel = vel + d-v;

/* Check material yielding and compute new stiffness */
for(ele=l ; ele<=2 ; ele=ele+l)
<

. details of element state determination

/* energy calculations for each element ele */

element-energyCk+l] C2*ele-ll = element,energy[k+l] CIZ*ele-11
+ 0.5*(Q-saved[eleltl]+Q)*(q-q-saved[elel [II>;

if(abs(Q) > 2*FyCelel Cl1 > then (
if(kx == Ks[ele][i] > then (

delta-Q = abs(srCele][i]) - 2*Fy[ele][I];
3 else (

delta-Q = abs(Q) - 2*FyCele] Cll;
J
delta-x = delta~Q*(1/KtCelelCll-l/KsCelel~ll);
element-energy[k+l] C2*elel =

0.5*Q*Q/Ks[ele] Cl] + 0.5*delta-x*delta-Q;
3 else C

if{ abs(srCelelCi1) > 2*FyCelell31 1 then (
if(kx == KsCele]Cil 1 then (

delta-Q = abs(sr[ele][i]) - 2*Fy[ele] [I];
delta-x = delta-Q*(l/KtCele] Cl1 -l/KsCelelCll);
element-energyCk+llC2*elel =

0.5*Q*Q/Ks~elelCl1 + 0.5*delta-x*delta-Q;
3 else (

if(((Q>O~)&&(srCelelCll~ON~)iI((QCON)&&~srCelelCil~OEJ~))
then C

element-energy[k+l]C2*elel = 0.5*Q*Q/KtCelel[ll;
3 else (

element_energy[k+l][2*elel = 0.5*Q*Q/KsCelel[I];

144

3
3

3 else {
element,energy[k+ll[2*elel = O.5*Q*Q/KsCelelClI;

3
3

3 /* ele */

/* assemble new structure stiffness */
BigKCll~ll = tangent[ll [I] + tangent[2] El.1 ;
BigKCll C21 = -tangent[21Cll;
BigKC21Cll = -tangentC21Cll;
BigKC2lC21 = tangentC21Cll;

/* assemble new internal load Fs, damping load Fd, and acceleration */
FsCll Cl1 = PReCll Cl1 - PReC21ClI;
Fs L-21 L-11 = PReC21 [II;

Fd = BigC*new-vel;
new-accel = M-inv*(P-Fs-Fd 1;

/* store analysis results */
o..... details of storing analysis results

/* compute eigen problem */
eigen = Eigen(BigK, BigM, 121);
eigenvalue = Eigenvalue(eigen);

result[k+l] CT] = 2*PI/sqrt(eigenvalueCll[ll 1;
resultCk+ll C81 = 2*PI/sqrt(eigenvalueC21 [II 1;

/* updating history for each load step k */
for(ele=l ; ele<=2 ; ele=ele+l >
x details of updating element history 3

/* update results for this step */
P = new-p;
vel = new-vel;
accel = new-accel;

) /* k in for0 loop, increase to next time step */

Points to note in input are:

1. The matrix result stores the computation results. Each column stores:

/* c01umnc11 : external applied load at end node (2) */
/* columnC21 : total elongation at end node (2) = C31+[4l */

145

/* colllmn[31 : element elongation 1, node 1 */
/* COl~C41 : element elongation 2, node 2 */
/* c01umnc51 : element force I, node 1 */
/* column[6] : element force 2, node 2 */
/* column[71 : dynamic natural period I (Tl) for each step */
/* column[83 : dynamic natural period 2 (T2) for each step */

2. The matrix element-energy stores results of the element energy

calculation. Each column stores:

/* c01umnc11 : internal strain energy for element 1 */
/* column[21 : elastic strain energy for element 1 */
/* c01umIlc31 : internal strain energy for element 2 */
/* c01umn[41 : elastic strain energy for element 2 */

Figures 5.26 and 5.27 show the first and second modal periods versus time for

our nonlinear analysis. We note that:

1. At any time in the time-history response, the mass-spring system will

assume one of four possible states of stiffness. These states are due to

various stages of spring stiffness yielding of course. The combinations are:

first, both springs are elastic; spring 1 yields and spring 2 is elastic;

spring 1 is elastic and spring 2 yields, and finally, both springs have

yielded. In its unloaded state, the mass-spring system has a first mode

period of 0.595 seconds and a second mode period of 0.271 seconds. The

first mode period elongates to 0.961 seconds and the second mode period

elongates to 4.591 seconds when both springs are in a post-yielding state.

2. The average natural period of the system during the loading period is

shown to indicate the period shift of the system ((Ti)cavercrge = 0.827sec

and (TQaverage = 0.374sec).

146

3. Figures 5.26 and 5.27 are important because they provide a rational basis

for assessing the validity and limitations of simplified procedures for the

design of nonlinear systems. Rather than work directly with a

time-varying nonlinear system, a number of simplified analysis procedures

are based on the behavior of an equivalent elastic system. The equivalent

system will have a damping ratio and effective natural period that is a

function (most likely an empirical function) of the system ductility.

The strain energy plot is shown in figure 5.28. The elastic energy is gradually

damped to zero. The plastic energy is still increasing after the external loading

ceases at time 2 seconds (this is because of the inertial effects remaining on the

system). Finally, total elongations of the static and dynamic systems are

compared in figure 5.29. The elongation of the static system remains constant

after the loading ceases, while the elongation of the dynamic system gradually

vibrates back to zero residual displacement.

.:.

.:.

. . .
,:. .-
.:.

~

.:.

.

:......

,.,.._, ”

..

.a............:

.-.:.

.:............;

..:.:

.............. .:

/

1.w..

:.....

. .

:._,_..

:.

;.....

0.56 -........... j... ..+..N,,i,.w-.& .,“““” j jj . . j . .._..,_.,_

j -. - Average nat&al perid in 2 set period 1
0.5 # t I , I , I

0 0.5 1 1.5 2 2.5 3 3.5 4
Time (set)

Figure 5.26: Change of Dynamic Natural Period 1

0.5-

z
g 0.4 -
N
-0
.o _
ii a

fO.35-
z

0.25-
0

-I-
ry L 3 .;.

. . .
.;
. .

.:_

I
2

I I 4
: - N+-al peri+ 2
1 -. - Average natural petia

L

i

in2secI

.j.

.:.

.:.

.;.

-

-L

3

.

J-l

.

.

I

0.5 1 1.5 3.5 4
Time (set)

Figure 5.27: Change of Dynamic Natural Period 2

148

601

50-,.....,...

5 0 do-.......... 3 s t Is = 30 _
E z 1 B 23 - I-

, l-

i

,:

I
I

I
I

,t.,..‘.‘-’

Time (set)

Figure 5.28: Strain Energy Plot of System (Dynamic)

I c iI \j :

EJj .._._..._ j iti’ . ‘*.,i . . . &., ,.,.,,,j,...........~.........,..i...

Time (set)

Figure 5.29: Comparison of Total Elongations of St,atic and Dynamic System

5.2.2 Energy Balance Calculations

In the analysis of nonlinear dynamic problems, it is usually advisable to

perform an energy balance check as a means of validating that the

computations are stable and accurate. At the highest level of abstraction we

can say that the system energy at time (n + l)At should satisfy the equation:

Wzl + T,,, = W;$ (5.25)

where W (without subscripts and superscripts) represents work done and T

represents kinetic energy. In physical term, equation 5.25 states that the work

done by external loads is converted to kinetic energy, and to energy stored

either elastically or dissipated by plastic deformations.(13)

The internal work, Wz”,, represents the work done by nodal loads that are

developed from the straining of materials. It is given by:

wy$yl = w?” + J
(n-t-1)At

wntdt.
nAt

(5.26)

A discrete approximation to equation 5.26 may be obtained by noticing that:

Here {hjn represents the velocity vector at time step n, and (Ri”t}n

represents the resisting nodal loads at time step n. Approximating the integral

in equation 5.26 by the trapezoidal rule gives:

The external work, Wz$, represents the work done by changes in externally

applied loads moving through displacement of the system degrees of freedom.

150

It is given by:

(5.28)

A suitable discrete approximation for W:z\ can be obtained from equation 5.27

by replacing superscript “int” by “ext”; i.e.,

wzl = W,-” + +};{R’““)n + {Jj};+l{Re=t)n+r). (5.29)

For systems that are damped, the resisting nodal load {Rint) includes at time

step n is a combination of straining force and damping force components. The

damping force at time step n is given by:

(Rwnp)n = [Cl,{%

The straining force {Rstiff),,, is obtained directly from the stress-strain curve.

Therefore:

{Rint)n = {Qzmp)n + {Rtifp)n. (5.30)

Finally, the kinetic energy T,+r is given by:

T n+1= ;{~]:;,,[Ml{~~n+l~ (5.31)

To construct an energy balance, we note that in general equation 5.25 is not

satisfied exactly. The quality of a numerical solution can be measured with the

convergence criterion:

(5.32)

where e is a tolerance factor and the absolute magnitude bars are a precaution

against small negative values of Wmt caused by spurious numerical errors.

Terms within parentheses on the right-hand side of equation 5.32 represent the

total energy in the system. The left-hand side is the energy error.

151

Numerical Example : We now extend the previous two-story lumped mass

pier example with the energy balance calculations. The following abbreviated

input file is positioned after the end of each load step calculation, but before

the updating of the element history response.

ABBREVIATED INPUT FILE

/* calculate the energy balance, Wint(n+l) + T(n+l) = Wext(n+l) */

trans-vel = Trans(velocity);
trans-vel-new = Trans(new,velocity);
trans.-dis-new = Trans(new,displ);

if(stepno == 1) then C

Wint-fs = dt/2*(trans_vel_new*Fs);
Wint-fd = dt/2*(trans_vel,new*Fd);
T = (trans-vel_new*massQneu_velocity)/2;
Wext = dt/2*(trans_vel,new*P_ext);

energy Cl1 El1 = Wint-fs[ll Cl];
energy Cl1 121 = Wint-fd[l] [I] ;
energyCl1 C31 = TCll Cl];
energyCll II41 = Wext[ll[ll;

3 else (

Wint-fs = dt/2*(trans,vel*Ps_int + trans-vel,new*Fs);
Wint-fd = dt/2*(trens_vel*Pd_int + trans-vel,new*Fd);
T = (trans-vel_new*mass*new_velocity)/2;
Wext = dt/2*(trans_vel*P_old + trans-vel-new*P-ext);

energylktepnol Cl1 = energyktepno-II Cl1 + Wint-fs Cl1 Cl];
energy[stepnol[2] = energyktepno-11 r.21 + Wint-fdCl1 Cl];
energyCstepnol[31 = TLXI Cl];
energyCstepnolC41 = energy[stepno-llC41 + Wext[llCll;

The matrix energy stores the results for each time step. The first column

contains the internal energy done by straining force, the second column

contains the internal energy done by damping force, the third column stores

the kinetic energy, and the fourth column stores the external energy.

152

The overall results of our energy balance calculation are plotted in figure 5.30

and figure 5.31. figure 5.31 shows a great match of the internal energy and the

external energy, therefore proving that the analysis of this nonlinear dynamic

problem has stable and accurate computation. Also note from figure 5.31 that

after the earthquake ground motions have ceased, there is no more external

energy input into the system. Hence, the curve IVet versus time is constant

over the response interval t E [lo, 151 seconds.

5 10 15
Time (set)

Figure 5.30: Internal Energy Time History for Two-Story Pier

.._,:.............,

- Total internal ehergy Wint
- - External energ{ Wext
.__......_...._....,....I........._....,...____,..___.._

5 10
‘lime (sea)

Figure 5.31: Total Energy Time History for Two-Story Pier

154

CHAPTER 6

Analytical Studies for Bgse Isolation of Bridges

6.1 Introduction to Base Isolation

Base isolators are artificial elements that protect highway bridge structures

from the full intensity of seismic attack. They are usually positioned between

the bridge piers and abutments, and the deck, and are designed for high energy

dissipation without a loss in strength occurring. In principle at least, this

capability enables the remainder of the structure to respond elastically, and

suffer no structural damage.

A number of mechanisms contribute to base isolation protection, including

high levels of viscous damping and energy dissipation, and movement of the

bridge system’s natural periods of vibration to regions of low dynamic

response. High levels of viscous damping and energy dissipation are desirable

because they lower the forces and displacements a structure must resist.

Studies of earthquake response spectra indicate that similar improvements in

performance will occur when the natural period of a structure is moved to a

region having low spectral accelerations. Collectively these mechanisms lower

the variation in bridge responses caused by a wide range of ground motion

inputs, and reduce the likelihood of undesirable concentrations of ductility

demand. Unfortunately, reductions in lateral forces are sometimes accompanied

by increases in structural displacements. A balance in these criteria is therefore

required.(rfi2@‘)

Most of the current isolation systems fall into two categories - elastomeric

155

isolation systems and sliding isolation systems. Elastomeric bearings are

constructed from laminated rubber bearings reinforced with steel plates. A

lead plug provides the isolator with stiffness to withstand moderate lateral

loads without yielding, and a capacity to dissipate large quantities of energy

during high lateral loads. Sliding isolation systems (e.g., Teflon-slider sliding

on a stainless steel plate) protect a superstructure by decoupling it from the

ground. They dissipate energy by means of frictional behavior. Restoring force

and re-centering capabilities are provided by helical springs (or by springs) in

the form of rubber cylinders.(31)

The purposes of this chapter are two-fold. First, we formulate a nonlinear fiber

finite element for the modeling of elastomeric isolators. Since fiber elements

cannot model sliding isolation elements accurately, this aspect of isolation

protection will not be discussed further in this chapter. The second objective

for this chapter is application of the element to the nonlinear time-history

analysis of a four-span bridge structure.

6.2 Lead-Rubber Bearings

The lead-rubber bearing is a laminated rubber bearing containing a lead plug

insertion, as shown in figure 6.1. The lead plug provides energy dissipation for

seismic response and stiffness for static loads and small lateral loads (e.g., wind

loadings). Lead-rubber bearings have been used extensively in bridge

structures that must resist severe seismic attack, and are an economical and

effective solution for bridge isolation, incorporating period shifting and

increased damping in a single device.(35)

156

Lead

-Ah/ Steel load plates

33 tl

Steel reinforcing
plates

Figure 6.1: Lead-Rubber Laminated Bearing

6.2.1 Material Properties

There are several good reasons for constructing the bearing center from lead.

The material properties of lead include (a) a low yield shear strength [about 10

MPa (1.45 ksi)]; (b) su ffi ciently high initial shear stiffness [the shear modulus

G is approximately equal to 130 MPa (18.8 ksi)]; (c) post yielding behavior is

essentially elastic-plastic; and (d) good fatigue properties for plastic cycles.

Experimental studies indicate that lead responds essentially with

elastic-perfectIy plastic loops. Hence, for practical purposes the post-yielding

isolator stiffness is equal to the stiffness of the rubber bearing alone. The

global hysteresis loop is a bi-linear solid with an initial elastic stifl’ness

kl = lOk, where k,. is the stiffness of rubber, then followed by a post yield

stiffness k2 = k,.(37?43) The size of the lead plug is proportional to the yield

strength of the isolator. The post-yielding stiffness is proportional to the

rubber bearing stiffness, and increases with the plan size of the rubber bearing

and reductions in the isolator height. These trends are shown in figure 6.2.

157

Increasing mbber
height and/or

V decreasing plan size

Displacement

Figure 6.2: Effects of Geometrical Variations of the Lead Plug and Rubber
Bearing on the Overall Response

6.2.2 Lead-Rubber Isolator Modeling in ALADDIN

We now consider the problem of modeling the lead-rubber isolator with the

fiber element in ALADDIN. Because the lead-rubber isolator is composed of

two different materials, each with its own shear modulus, the isolator behavior

is modeled with a FIBER-SDS element (see APPENDIX A for the definition and

usage of FIBER3DS element).

Figure 6.3 is a plan view of a lead-rubber isolator, showing the section

dimensions and positions of the fiber elements. Each quadrant of the isolator is

modeled with two fibers, one for the lead, and a second for the rubber. The

fibers are positioned at the centroid of the material quadrant. The material

properties are as mentioned in the previous section.

Figure 6.4 compares the force-displacement relationship for the FIBER3DS

element with the experimental data generated by Robinson.(37) Since there is a

good match between these curves, we conclude that the bi-linear fiber element

will provide sufficient modeling accuracy for this study.

133

x:fiber Dosition
1.3 :fi& number

1,hTLM.S. =600 luw11u11
= 1.75 kN/mm

Figure 6.3: Modeling of Lead-Rubber Isolator

Displacement (mm)

Figure 6.4: Force-Displacement Hysteresis Loops for Lead-Rubber Isolator

6.3 Modeling of Isolated Bridges

The modeling of an isolated structure can take on varying levels of complexity.

The simplest case is a single degree-of-freedom model with a linear-elastic

isolation system and a rigid superstructure. The most complex case is a fir11

three-dimensional model of both the isolation system and the superstructure,

with a nonlinear isolation system and nonlinear frame type superstructure.

Shenton and Taylor (42) have provided a spectrum of analytical models that can

be used in the analysis of base isolated structures. Maragakis and Saiidi(28)

present some simple analytical models of lead-rubber base isolated bridges. A

detail discussion on techniques for modeling and analyzing and designing base

isolated highway bridges can be found in Priestley’s book.(35)

6.4 Analysis Methods

Generally speaking, the analysis of a base isolated structure is more

complicated than the analysis of a conventional structure which may not need

to withstand seismic loadings. This situation is not helped by the lack of

guidelines for the analysis of base isolated structures.(42) By resorting to first

principles, however, a number of avenues exist for simplifying the analysis.

First, there is no need to take into account nonlinear response of the pier

elements. The pier masses and their own modes of vibration should be part of

an analysis, however, since isolation of the lower-frequency modes involving the

deck mass may increase the importance of higher-frequency modes. Because

the bridge superstructure is expected to remain essentially elastic, even for the

largest seismic events, its behavior can be modeled with linear elastic elements.

160

During the preliminary stages of design, effects of soil-structure interaction and

the coupling effects of the deck may be neglected. Refined analyses are

required for detailed bridge design. For example, by modeling the deck and

pier with linear beam elements having mass, a MDOF model can be used to

account for coupling effects of the deck. The isolation system will be modeled

with linear equivalent highly damped elements, or, more appropriately, with

bilinear elements.(35) In practice a nonlinear timehistory analysis is almost

always conducted.

The AASHTO Guide Specification&) contain two analysis procedures for

bridges having a variety of spans, geometric complexity, and the Seismic

Performance Category. Procedure 1 is the single-mode method of analysis.

Procedure 2 is the multi-mode method of analysis. Both the single and

multi-mode methods of analysis for seismic isolation design assume that energy

dissipation of the isolation system can be expressed in terms of equivalent

viscous damping, and the stiffness of the isolation system can be expressed as

an effective linear stiffness. These assumptions simplify the required

complexity of analysis enormously. These guidelines stipulate that for isolation

systems without self-centering capabilities, or for isolation systems where the

effective damping (% of critical) exceeds 30 percent, a three-dimensional

nonlinear time-history analysis shall be performed.

1. Single Mode Spectral Analysis : The single mode method of analysis

given in the AASHTO Standard Seismic Specifications(2) is appropriate

for seismic isolation design. The only difference is that the statically

equivalent force is determined associated with the displacement across

the isolation bearings, and the effective linear stiffness of the isolators

161

used in the analysis shall be calculated at the design displacement.

2. Multimode Mode Spectral Analysis : The guidelines given in

Section 5.4 of the AASHTO Standard Seismic Specifications are also

appropriate for the equivalent linear response spectrum analysis of an

isolated structure with the two modifications. First, the isolation bearings

are modeled by use of their effective stiffness properties determined at the

design displacement. In the second modification, the ground response

spectrum is modified to incorporate the damping of the isolation system.

3. Time History Analysis : A nonlinear time-history analysis is generally

considered to be the most complete and time-consuming structural

analysis method. When applied correctly, however, it can provide the

most reliable results for the variation of forces and displacements during

earthquake ground motion. The frequency content of ground motion

accelerations should be scaled so they closely match the appropriate

ground response spectra for a particular site. In addition, the analytical

model should incorporate the nonlinear deformational characteristics of

the isolation system.

A comparison of AASHTO recommended analytical methods applied to a

4-span continuous bridge is presented by Mayes.@) The California Department

of Transportation (CALTHANS) has also proposed two methods for the

analysis of bridge isolated with bearings whose hysteresis behavior can be

appropriately represented by a bi-linear model. In the first CALTHANS

proposed method, the hysteresis

idealized by a bi-linear model in

behavior of a base-isolated regular bridge is

the direction of consideration. Then with the

162

hysteresis loop of the entire base-isolated bridge in hand, an empirical model is

used to determine the effective period and equivalent viscous damping ratio of

the bridge. In the second CALTRANS proposed method, an empirical model is

used to determine the effective stiffness and equivalent damping ratio of

isolation bearings rather than the base-isolated bridge itself. A modal strain

energy method combined with the concept of component energy ratio was

utilized to formulate the “composite damping ratio” of the entire base-isolated

bridge.c4i)

6.5 Combination of Isolator and Support Properties

When a base isolator is installed between the top of a bridge column and

beneath the deck structure, the parameters of the column combine with those

of the isolator. The overall characteristics of the superstructure and isolation

system reflect a combination of individual composite dynamic parameters.(5~43)

For most practical situations, the superstructure mass is much greater than the

column mass, and hence the first mode of vibration is dominated by

displacements of the superstructure. The second mode, in comparison, involves

lateral motion of the top of the column with little movement of the

superstructure (see, for example, figure 6.5).

6.6 Example of Nonlinear Time History Bridge Analysis

In this section we use ALADDIN for a threedimensional nonlinear

time-history analysis of a four-span base isolated highway bridge. The

particulars of this example are taken from the text of Priestley et al..(35) The

longitudinal view of the bridge geometry is shown in figure 6.7. The pier and

(a)Non-isolated (b)Isolated

Figure 6.5: Lateral Direction Mode Shapes

deck section properties are shown in figure 6.9. Capacities of the piers and

isolators are listed in table 6.1. The isolators are assumed to have

elastic-perfectly plastic behavior, which means no strain hardening after

yielding. The deck and piers are assumed to remain elastic during the dynamic

responses. We choose the 1940 El Centro SOOE record (see figure 6.6) as the

input earthquake with the peak ground acceleration scaled to 0.59.

0 1 2 3 4 6 7 8 9 10

Figure 6.6: 1940 El Centro SOOE Record

The finite element mesh is shown in figure 6.8. The deck and columns are

modeled with elastic 3-D frame elements (i.e., element type FRAME3D). Only

the isolators sre modeled as 3-D nonlinear fiber elements with bi-linear

164

Y
50 m 50 m 50 m 50 m

Figure 6.7: Elevation Plan of Isolated Bridge

@ : IsolaotrAttribute2;

14

* NOT TO SCALE *

1 - 22 : Node Number
@ -0 : ElementNumber

@-@:ColumnAttribute2;

Q-0 :ColumnAttribute3;

@-@:ColumnAtUibute4;

Figure 6.8: Finite Element Mesh of Isolated Bridge

FIBER-3D

FIBER-3D

FIBER3D

FIBEL3D

FRAME-3D

FR?XE_3D

FRAME-3D

;

I 3m ! 8m[I 3m
-1

I I 10.3 m 1 I I
I I 1

Y -m---w-- Y

I X

Pier I
L

0.4 m 3.d m 0.4 m

ylj2g=+, I --- -Y

pier I,

Ix(m2 > 1 87.24 1 7.39 1 I I

Figure 6.9: Pier and Deck Section Properties

Table 6.1: Pier and Isolator Capacities
secant stiffness (M/m) yield strength (MV)

isolator 1,5 at abutments 5300 2100

isolator 2 16100 2100

isolator 3 11500 2100

isolator 4 47000 2100

pier 2 30700

pier 3 124400

pier 4 13650

166

shear-displacement response (i.e., element type FIBER-3D). The lower ends of

the piers and abutments are fully fixed. We also assume that there are no

longitudinal deformations and twisting at the both ends of the bridge deck. In

total there are 21 elements, 8 different element attributes and 98 degrees of

freedom in this model.

Eigenvalue Analysis : The following fragment of code shows the essential

details of code needed to compute the first two modes of vibration, and their

natural periods.

ABBREVIATED INPUT FILE

/* Form stiffness matrix and mass matrix */
stiff = StiffO;
mass = Mass([ll);

/* Compute first two eigenvalues, periods, and eigenvectors */

no-eigea = 2;
eigen = Eigen(stiff, mass, Cno-eigenl);
eigenvalue = Eigenvalue(eigen);
eigenvector = Eigenvector (eiged;

Tl = Z*PI/sqrt(eigenvalueCll Cll 1;
T2 = Z*PI/sqrt(eigenvalue t21 El1 1;

The first two modes of vibration for both the non-isolated and isolated bridges

are shown in the three-dimensional plots of figures 6.10, 6.11, 6.12 and 6.13.

We can see from these plots that the non-isolated bridge deck deforms in

cosine and sine curves. The columns deform elastically. For the isolated

bridge, the deck undergoes a rigid body displacement. Most of the

deformations in the piers occur at isolators. Also note that the natural periods

for the first two modes have been significantly shifted, from (0.71 set, 0.57 set)

to (2.02 set, 1.97 set).

167

Mode shape Bridge distance (m)

Figure 6.10: First Mode of Non-Isolated Bridge, Tl = 0.71 set

0.

E
-5.

E
po.

5
; -15.

Mode shape -1 0
Bridge distance (m)

Figure 6.11: Second Mode of Non-Isolated Bridge, T2 = 0.57 set

168

"1
_.’

2 -5. ::- . . .

E
ElO.
I

E
2
0 0 -15.

-20 -i

Modeshape -’ -0
Bridge distance (m)

Figure 6.12: First Mode of Isolated Bridge, Tl = 2.02 set

Mode shape -1 0
Bridge distance (m)

Figure 6.13: Second Mode of Isolated Bridge, T2 = 1.97 set

169

Nonlinear Time History Analysis : We now extend the previous analysis

to time-history analysis. The time-history analysis assumes equivalent viscous

damping of 5 percent in the form of Rayleigh damping. A second time-history

analysis is computed for a non-isolated bridge, thereby enabling comparison of

the isolated and non-isolated responses, and assessment of the benefits of base

isolation. The following script of code shows the essential details of the

non-linear Newmark analysis:

ABBREVIATED INPUT FILE

while(stepno=l; stepno <= total-stepno; stepno=stepno+l) <

/* Update time and step no */
time = time + dt;

/* Compute effective incremental loading */
if(stepno <= dimenCl1ClJ) then (

P-ext = -mass*r*Elcentro[stepno][l];
3 else C

P-ext = -mass*r*(O.O m/sec/sec); 3

dPeff = P-ext - P-old + ((4/dt)*mass+2*damp)*velocitg + 2*mass*accel;

/* Compute effective stiffness from tangent stiffness */
Keff = stiff + (l/dt)*damp + (4/dt/dt)+mass;

/* Solve for d-displacement, d-velocity */
dp = Solve(Keff, dPeff);
dv = (2/dt)*dp - 2*velocity;

/* Compute displacement, velocity */
new-displ = displ + dp;
new-velocity = velocity + dv;

/* Check material yielding and compute new stiffness */
ElmtStateDet(dp);
stiff = StiffO;

/* Compute new internal load, damping force, and acceleration */
Fs = IntemalLoad(new-displ);
Fd = damp*new,velocity;
new-accel = mass-inv*(P,ext-Fs-Fd >;

/* tolerance is satisfied, update histories for this time step */

UpdateResponseo;
P-old = P-ext;
Fs-old = Fs;
Fd-old = Fd;
displ = new-displ;
velocity = new-velocity;
accel = new-accel;

1

Figure 6.15 through 6.30 summarize a variety of displacement, shear force, and

enere;y computations versus time for the isolated and non-isolated bridge

structures. Points to note are:

1. The deck displacements at the pier top are shown in figure 6.15 and 6.16

for both the non-isolated and isolated bridges. As expected, the isolated

bridge undergoes larger displacements than the non-isolated bridge. For

example, at Pier 4 the maximum displacement of the isolated bridge is

about 3.2 times larger than the maximum displacement of the

non-isolated bridge (see figure 6.19). Also, because the isolators exhibit

nonlinear behavior, the isolated bridge has a 0.02772 residual displacement

after the earthquake response has ceased.

2. The shear forces at the bottom of the piers are plotted in figure 6.17 and

6.18. Let us consider shear forces in the non-isolated bridge first. Pier 3

has the shortest height - it has the highest stiffness, and attracts the

highest concentrations of shear force accordingly. For the isolated bridge,

the isolators have been designed so that the effective stiffness and

displacements of the piers are similar. Hence, the structural response is

quite regularized. The isolators also reduce the maximum bottom shear

force in pier 3 by a factor of 6 (see figure 6.20). Another thing we want to

point out is that once the isolators have yielded, displacements of the

bridge deck can occur without a corresponding increase in isolator shear

forces. This observation is consistent with our assumption of

elastic-perfectly plastic behavior.

3. The force-displacement responses for the isolators are shown in figure 6.21

through 6.24. Noting that the isolator ductility PD may be defined as

AP
ClD =--1,

ADE

and the effective global ductility j&G as

AP
PG = A,-I-ADE’~’

where Ap, As and ALE are defined in figure 6.14, we can calculate the

ductilities of each pier-isolator system.

Elastic pier B&linear isolator Total

Figure 6.14: Definition of Structure Ductility

Table 6.2: Ductility of Pier-Isolator System I I 1
abutments 1,5 pier 2 pier 3 pier 4

PD 1.41 1.64 1.45 2.78

PG 1.41 1.42 1.41 1.40

The results are summarized in table 6.2. It is evident that by designing

the individual isolators for a different ductility demand, the overall bridge

172

system can be designed so that the ductility demand on the pier systems

(i.e., pier + isolator) is about the same. This strategy of design

regularizes the structural response.

4. Figures 6.25 and 6.26 plot components of the energy balance analysis for

the non-isolated and isolated bridges, respectively. From figure 6.27 we

can see that the energy history of the isolated bridge is much higher than

the non-isolated bridge. This is because displacements in the isolated

bridge response are much larger than the non-isolated bridge, and

because of the plastic strain energy (hysteresis energy) of the isolators.

5. The shear force-displacement response diagrams for the isolators (see

figure 6.21 through 6.24) can be used to compute contours of elastic and

plastic shear strain energy history. The results of these computations are

plotted in figure 6.28. Because the non-isolated bridge response is

assumed to be elastic, the internal strain energy caused by stiffness forces

will gradually return to zero after the earthquake ends. But for the

isolated bridge, the internal strain energy (also caused by stiffness forces)

has a residual energy after the earthquake ends. This residual energy is

the plastic shear-strain energy (or hysteretic energy) dissipated by the

isolators. The latter results are shown in figure 6.29.

6. The bridge strain energy is equal to the sum of strain energies in the

isolators, piers and deck. Therefore the strain energy of the deck and

piers is equal to bridge strain energy minus total isolator strain energy.

The timehistory of these strain energy components is shown in figure

6.30. Because the strain energy components are roughly proportional to

173

the square of the bridge displacements, higher strain 1eveIs of energy in

the bridge components means a higher possibility of damage. Figure 6.30

clearly shows that the peak values of strain energy in the isolated bridge

deck are lower than those in the conventionally supported bridge deck.

Hence, we conclude that the isolation system protects the bridge

superstructure, as required.

174
I

Time (set) ‘-

Figure 6.15: Deck Displacement of Non-Isolated Bridge

a,c.\..j;.

,,\I 4m.g
. ..I.......... :. *-...-. pi&~

.’ Pier4

; -Abutment5
I I

5 10
Time (set)

Figure 6.16: Deck Displacement of Isolated Bridge

1

0,

z
“m

2
(I)
E

B
22

-0.

-1.

I...,, Pier4
i I J 8 I

5 10 15
Displacement (m)

Figure 6.17: Bottom Shear of Non-Isolated Bridge

-3’ , I I ;
0 5 10 15

Time (set)

Figure 6.18: Bottom Shear of Isolated Bridge

176

-0.31
0

; ,
5 10 15

lime (set)

Figure 6.19: Deck Displacement Comparison at Pier 4 of Bridges

!J f .,... (,,.. r;...t
.

II ‘I !I II c

:!I i II
;; t1 II

‘C , :I $1 II :.

Displacement(m)

Figure 6.20: Bottom Shear Force Comparison at Pier 3 of Bridges

I.77

-1.5-
4.3 -0.2

1 I I ,
-0.1 0 0.1 0.2 0.3

Displacement(m)

Figure 6.21: Force-Displacement Response of Isolators at Abutment 1,5

2.5
x lo6

1 I , 0 I 1 1 I

-2.5’ I I , I # 1 ,
-0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2 0.25

Displacement(m)

Figure 6.22: Force-Displacement Response of Isolator at Pier 2

178

2.5
x lo*

1 I I I I

I I 8 I I
-0.1 0 0.1 0.2 0.3

Displacement (m)

Figure 6.23: Force-Displacement Response of Isolator at Pier 3

I I
0 0.05
Displacement (m)

0.1 0.15

Figure 6.24: Force-Displacement Response of Isolator at Pier 4

179

- Wint by stiffness for&

- - Wint by damping force
,. ~ .~.‘.~.-

cc
+.~;.~~ineiic.eneiii . +T_.._._......._

..... Wint total
:: ,

.:: ,
: $

..........

..........

,/.__.......... . i: . . / jI.....................

Time (set)

Figure 6.25: Energy History of Non-Isolated Bridge

-:.-.kin&.enqy i ..___..........._...

Time (set)

Figure 6.26: Energy History of Isolated Bridge

180

,..
0 5 10 15

lime (sea)

Figure 6.27: Energy History Comparison of Non-Isolated Bridge and Isolated
Bridge

.

.................... . . =1.5 -..........,........ :.

0
3

5 5 10 10 15 15
Time (set) Time (set)

Figure 6.28: Elastic and Plastic Strain Energy of Isolators

9

2.5

2

-2
2
31.5
$

15

1

0.5

C

- Total bridge strain en&y
-. - Total plastic strain en&y of isolators

5 10
Time (WC)

Figure 6.29: Strain Energy History of Isolated Bridge

x 10”

“I I;- - #
Unisolated Bridae :

R 1 . ..1.. .I:+-- ... Isolated Bridge: deck!& piersi

-1

’ ” 11 , ;; . . . j .
4’1 i

z6

-t

II 11 :I“..‘......i..r’.....~...... :,
I,lII i i l l

& l,IIII : 51
Et-5 . ;,.I1 . . i ,..........,.......,.,,,........ $I,,.....,...............,....,

Figure 6.30: Strain Energy History Comparison of Deck + Piers

182

CHAPTER 7

Conclusions and Future Work

7.1 Conclusions

In the general area of computational technology for engineering, the 1990s are

shaping up to be the decade of global networking and multimedia. These

advances will allow for the prototyping of interactive computing environments

tailored to the life-cycle development of complex engineering systems. For

these environments to be commercially successful, they will need to support

development of engineering systems from multiple viewpoints, and at multiple

levels of abstraction. Engineers should be provided with the tools to integrate

once disparate disciplines. While a strong need for the merging of matrix

computations with finite elements (and optimization, control and graphics) is

already evident, many other possibilities exist. For instance, now that many

companies are engaging in business practices that are geographically dispersed,

engineers will soon expect connectivity to a wide range of information services

- electronic contract negotiations, management of project requirements,

design rule checking over the Internet, and availability of materials and

construction services. The participating computer programs and networking

infrastructure will need to be fast and accurate, flexible, reliable, and of course,

easy to use.(17p47)

With these observations in mind, our long-term goal for ALADDIN is to

provide engineers with such a computational problem-solving environment.

Version 1.0 of ALADDIN is simply a first step in this direction. For Version 1.0

183

the emphasis in development has focused on the basic system specification and

its application to matrix and finite element problems. This work involved the

determination of data types, control structures, and functions that would allow

engineers to solve a wide variety of problems, without the language becoming

too large and complicated, and without extensibility of the system being

compromised.

This dissertation contains material that will become ALADDIN Version 2. A

new fiber element that includes flexural and shear deformations, and is capable

of modeling bi-linear material behavior, has been added to the finite element

library for Version 2. Behavior and accuracy of this new element has been

verified through studies of the hysteretic forcedisplacement relations in a

lead-rubber isolator. Furthermore, a nonlinear time-history analysis of a base

isolated bridge has been computed by modeling all of the isolators with the

fiber elements. The energy-balance calculations and plots of displacement

versus time indicate that during a severe earthquake ground motion, the

isolators protect the bridge superstructure and pier columns by reducing shear

forces in the pier columns and by reducing the strain energy absorbed by the

deck and columns.

From the beginning of this project the capabilities of the ALADDIN

computational environment have been growing steadily. The suite of

ALADDIN test problems has been expanded for Version 2.0, and now includes

applications of design rule checking, nonlinear numerical algorithms,

linear/nonlinear time-history analyses of structural systems involving

multi-component earthquake ground motions, and energy balance calculations.

The implementation of basic design rule checking required only very minor

184

extensions to the language. Now nonlinear numerical analysis can be computed

with a variety of algorithms. The application problems involving multiple

components of ground motion input, and energy balance calculations are simply

two cases of how structural analyses can be customized from the ALADDIN

input file. There is no need to change the ALADDIN program source code.

In projects of this type, program user feedback is necessary component of

ensuring the software works as advertised. Since the Internet is now the most

powerful resource for information dissemination, in April 1996 a World Wide

Web (WWW) home page for ALADDIN was created (the home page address is

http://www. isr. umd. edu/-austin/aladdin. html). The home page contains an

assortment of example problems and the source code to ALADDIN Version 1.0.

So far more than 1,100 copies of the program have been downloaded, and

comments have been sent back to authors. According to those comments and

our observations, our goals for future work are as follows.

7.2 F’uture Work

Because ALADDIN is a problem-solving environment for engineers, the future

work will be guided by the needs of engineering analysis. Extensions of the

software to handle new types of engineering problems are required, as are

enhancements to the ALADDIN software.

7.2.1 Engineering Side

The current targeted application areas include:

1. Hybrid Control of Base Isolated Highway Bridge : This

dissertation has been concerned with the construction of models for base

185

isolated highway bridge structures. The next logical step in this research

is hybrid control of isolated highway bridges. Studies of the active hybrid

control require models of the bridge response due to earthquake loads,

and the collection of response data for adjust of the response via feedback

control. Our current thinking is that this extension can be done by

adding just a few extra functions to the program, and perhaps by linking

ALADDIN to the MATLAB Control and Optimization Toolboxes.(48)

2. Dynamics of Tethered Airship Systems : This application area is

concerned with the formulation of mathematical models for airships

anchored to the ground by a Kevlar tether. The airships will fly at an

altitude of 15,000 ft, and will carry a surveillance payload. Before a

variety of these systems can become operational, however, detailed

mathematical models of the aerostat system that include interaction of

the structural and mechanical systems, aerodynamics, and meteorology

(e.g., wind, downdrafts, and electrical storms) are needed.

3. Structural Optimization : The language specification will be extended

so that engineers can describe design objectives, design constraints, and

design parameters, for general engineering optimization problems in a

compact manner. The issue of “compactness” is particularly relevant for

optimization problems that involve finite element analysis because they

often contain hundreds, and sometimes thousands, of constraints.

Further work is needed to determine how groups of similar constraints

can be bundled into groups, and how ALADDIN’s control structures can

be exploited to write down these constraints in a compact manner. Once

186

the issue of constraints is sorted out, the pathway for describing the

design parameters and objectives should (hopefully) become clearer.

Again, rather than implement our own homegrown optimization

algorithms, links to the MATLAB Optimization Toolbox will be provided.

4. Performance Based Design : As pointed out in chapter 1, the goal of

performance-based engineering is to define performance objectives for

various types of structures, and to control the risk associated with each

limit-state to a predefined level of acceptability. ALADDIN’s scripting

language gives users the ability to collect and manipulate the data

generated by the analyses, to choose performance objectives, and to

define levels of acceptability. The work presented in this dissertation is

one step in this direction, and there is a need to extend the energy

calculations so that they are coupled to estimates of structural damage

caused by nonlinear hysteretic deformations. Performance based studies

should also account for system reliability, perhaps by computing statistics

of extreme response caused by a small ensemble of ground motion inputs.

7.2.2 Software Side

Advances in the engineering capabilities of ALADDIN need to be accompanied

by appropriate improvements in software support. These enhancements

include:

1. New Library .of Functions : When a new element is added to the

program, some related functions may be needed in the matrix, finite

element or kernel libraries. For example, the function ElmtStateDet 0

was added to the finite element library for state determination of the fiber

187

element deformations. The function GetStress was added for design

rule checking. There is a need to improve the instructions/guidelines for

adding new library functions (perhaps by putting them on the web site).

2. Internet User Interface for ALADDIN : Future versions of

ALADDIN will most likely operate in a client-server mode over the

Internet, as shown in figure 7.1.

[Z] ;it ‘[Z]
4

JAVA Interface

Figure 7.1: Relationship of ALADDIN and JAVA interface

In this arrangement of computing, analysis problems will be run on a

high-speed ALADDIN server and displayed on an inexpensive client side

computer. Using JAVA technology to build the networking software and

client-side platform independent user interfaces is highly promising. The

authors want to setup such a JAVA interface on our ALADDIN web page

and then let people from all over the world try out our program before

downloading it. The main technical challenge is determining the protocol

of communication between ALADDIN and the JAVA-based interface.

3. User-defined Functions : The current version of ALADDIN does not

permit the use of user-defined functions and procedures in the input file.

At the beginning, the object of work on ALADDIN is to make the input

file language relatively simple - otherwise, why not simply code the

whole problem in C? An easy way of controlling language complexity is

188

to disallow user-defined functions in the input file, and it has done for

ALADDIN Version 1.0. Now that the matrix and finite element libraries

are working, this early decision needs to be revised. It is desired to

combine the finite element analysis with discrete simulated annealing

optimization algorithms, along the lines proposed by Kirkpatrick.(24) The

latter could be succinctly implemented if user-defined functions were

available. The current version of ALADDIN assumes that all user-defined

variables are global. When user-defined functions are added to

ALADDIN, notions of scope should also be added to variables (this could

be implemented via an array of symbol tables). A suite of example

problems to show how these user-defined functions work is also needed.

4. Assembling Input from Component Input Files : To promote

reuse of problem specifications, mechanisms for assembling an input file

from component input files are needed , as shown in figure 7.2.

Total Components Future work

Figure 7.2: Future Input File for ALADDIN

Designing a graphical interface that would allow a user to incrementally

assemble problem components is a very challenging research problem.

189

APPENDIX A

Fiber Elements in ALADDIN

Fiber elements can be used for modeling of bi-linear materials with flexural and

shear effects. There are four types of fiber elements in ALADDIN: FIBER_2D,

FIBERJDS, FIBER3D, and FIBER3DS. The numbers 2 and 3 indicate two- or

three-dimensional elements, respectively. The difference between the element

types (FIBER2D, FIBERSD) and (FIBER2DS, FIBER3DS) lies in the shear

modeling. FIBER-2DS and FIBERSDS can be used to model elements having

more than one shear property in the sub elements. If the element shear

properties are homogeneous, use of FIBER2D and FIBER-3D will reduce the

memory allocation requirements and the required calculation time.

A number of new language features have been added to ALADDIN for finite

element computation using fiber elements. First, a neti problem specification

parameter GaussIntegPts has been created for fiber elements. It defines how

many Gauss-Lobatto integration sections (besides the two end sections) you

want for each element. Any integer number between 2 and 10 is valid (the

default number is 2).

A fiber element attribute is defined with the ElementAttr 0 (. . .> function.

Four character string arguments should be specified inside the braces: type,

section, material, and fiber. The definitions of type, section, and

material are the same as for the other finite elements. The character string

for the fiber attribute is defined with FiberAttr (a, “b”) {a . .) function, where

a is number of fibers in the element, b is a character string for the name of the

191

fiber attribute. The . . e part inside the braces includes definitions of four

matrices: FiberCoordinate, FiberArea, FiberMaterialAttr, and

FiberMaterialMap. FiberCoordinate defines the coordinate of each fiber in

the element cross section. FiberArea defines the cross section area of each

fiber in the element cross section. FiberMaterialAttr defines different

material types of fibers. FiberMaterialMap defines the mapping number of

each fiber’s material type.

A.1 Two-Dimensional Fiber Elements

The fiber element has the same degrees of freedom as the traditional plane

frame element.

Figure A.l: Schematic of TwoDimensional Fiber Beam/Column Element

A.l.l 2D Fiber Element with Homogeneous Shear Properties

FIBER2D is the element type name for a two-dimensional two-node fiber

element with homogeneous shear properties.

Section Properties: The element section properties are defined for the whole

element. The section properties include the element’s total cross-section area,

area (area may be computed from the section depth times its width or bf).

The shear-factor for shear effect in the element is 1.2 by default. In order to

192

calculate a mass matrix for dynamic analysis, either unit-weight in the

section properties, or density in the material properties must be supplied.

The fiber element supports only lumped mass matrix.

Material Properties: The element material properties are defined for the

whole element. The material properties include Poisson’s ratio v (poisson, 0.3

by default), and density. The material properties in element type FIBEL2D

also include the shear modulus (G), tangent shear modulus (Gt), and shear

yield stress (shear-yield). Note that G, Gt and shear-yield represent the

shear properties for the whole element. Young’s modulus (E), tangent Young’s

modulus (Et) and yield stress fy (yield) are not defined here; they will be

defined in fiber attribute.

Fiber Attribute: FiberCoordinate includes y-coordinate of each fiber in the

element cross section. FiberMaterialAttr includes the Young’s modulus,

tangent Young’s modulus, and yield stress.

Y

t
ibt :I$. :*. . . ; . : : . :.g .:.‘:*,. * ; :..
1
T

3 h .

?
I

Young’s Tangent Yield
Modulus Young’s

Modulus
Stress I

1 ii El Et1 fY1
rl

juI E2 Et2 fY2

Figure A.2: Example of Two-Dimensional Fiber Element Modeling

Example: The following script contains the ALADDIN statements needed to

193

model the 4 fiber elements shown in figure A.2

ABBREVIATED INPUT FILE

AddElmt(1, [1,21, “eh%attr” 1;

/* Define Element Attribute */

ElementAttr("elmt-attr")(type = "FIBER 2D".
section = "se&me" I
material = "mat-name";
fiber = "fib-name";)

/* Define Section Properties */

SectionAttr("sec-name") (area = b*h;
width = b; depth = h;
unit-weight = 1 N/m;)

/* Define.Material Properties */

MaterialAttr("mat-name")(Poisson = nu; G = G; shear-yield = fv; 3

/* Element is modeled with 4 fibers and equally meshed. */

no-of-fiber = 4;

fiber-coord = [3/&h, 1/8*h, -1/8*h, -3/8*h 1;
fiber-area = I: b*h/4, b*h/4, b*h/4, b*h/4 1;

/* Element is composed of two materials. */

fiber-attr = [El, E2;
Etl, Et2;
fyi, fy2 1;

/* Fiber No.1 and No.2 are material 1 */
/* Fiber No.3 and No.4 are material 2 */

fiber-map = c 1, 1, 2, 2 1;

/* Define Fiber Attribute */

FiberAttr(no-of-fiber, "fib-name" > (FiberMaterialAttr = fiber-attr;
FiberCoordinate = fiber-coord;
FiberArea = fiber-area;
FiberMaterialMap = fiber-map;)

194

A.12 ‘2D Fiber Element with Different Shear Properties

FIBER2DS is the element type name for a two-dimensional two-node fiber

element with different shear properties.

The section properties and material properties are the same as FIBER2D. One

exception is that there is now no need to define shear properties in material

properties, since they will be defined in FiberMaterialAttr matrix.

Fiber Attribute: FiberMaterialAttr of FIBER2DS includes the Young’s

modulus, tangent Young’s modulus, yield stress, shear modulus, tangent shear

modulus, and shear yield stress.

ABBREVIATEDINPUTFSLE

/* Element is composed of two different shear properties materials. */

fiber-attr = [El, E2;
Etl, Et2;
fyi, fy2;
Gl, G2;
Gtl, Gt2;
fvl, fv2 1;

A.2 Three-Dimensional Fiber Elements

The three-dimensional fiber element has the same degrees of freedom as the

traditional space frame element.

A.2.1 3D Fiber Element with Homogeneous Shear Properties

FIBER3D is the element type name for a three-dimensional two-node fiber

element with homogeneous shear properties.

195

2
Y

L x

12

8’ J

Figure A.3: Schematic of Three-Dimensional Fiber Beam/Column Element

Section Properties:

The element section properties defined here are for the whole element. The

section properties include element’s total cross-section area (area may be

computed from the section depth times its width or bf). The shear-factor for

shear effect in the element is 1.2 by default. The torsional constant (.I) has to

be given in section properties. For dynamic analysis, in order to calculate mass

matrix, unit-weight in section properties or density in material properties

must be given. The fiber element supports only a lumped mass matrix.

Material Properties:

The element material properties are defined for the whole element. The

material properties include mass density and Poisson’s ratio v (poisson, 0.3

by default). The material properties in FIBER3D also include the shear

modulus (G), tangent shear modulus (Gt), and shear yield stress (shear-yield).

Note that G, Gt and shear-yield represent the shear properties for the whole

element. Young’s modulus (E), tangent Young’s modulus (Et) and yield stress

fy (yield) are not defined here, they will be defined in fiber attribute.

Fiber Attribute: FiberCoordinate defines both y-coordinate and

196

z-coordinate of each fiber in the element cross section. FiberMaterialAttr

defines different material types of fibers, it includes the Young’s modulus,

tangent Young’s modulus, and yield stress.

I b I

h -Y

Young’ s Tangent Yield
Modulus Young’s

Modulus
Stress

iI ii El Et1 w

0 E2 Et2 fY2

Figure A.4: Example of Three-Dimensional Fiber Element Modeling

Example: An element is modeled with 8 fiber elements as shown in figure A.4.

The ALADDIN code needed to construct this section is:

ABBREVIATEDINPUTFILE

AddElmt(1, [1,21, “elmt-attr” 1;

/* Define Element Attribute */

ElementAttr("elmt-attr")< type = "FIBER-3D";
section = "see-name" ;
material = "mat-name";
fiber = "fib-name"; 3

/* Define Section Properties */

SectionAttr("sec-name") I area = b*h;
width = b; depth = h;
J = 0.2 m-4;
unit-weight = 1 N/m; 3

/* Define Material Properties */

MaterialAttr("mat-name")< Poisson = au; G = G; shear-yield = fv;)

/* Element is modeled with 8 fibers and equally meshed. */
/* (4 rows by 2 columns) of fibers per cross section */

no-of-fiber = 2*4;

fiber-coord=[b/4, -b/4, b/4, -b/4, b/4, -b/4, b/4, -b/41 ;
3/8*h, 3/8*h, 1/8*h, 1/8*h, -1/8*h, -1/8*h, -3/8*h, -3/8*h];

fiber-wea =Cb*h/8, b*h/8, b*h/8, b*h/8, bth/8, b*h/8, b*h/g, b*h/g];

/* Element is composed of two materials. */

fiber-attr = [El, E2;
Etl, Et2;
fYl. J fy2 1;

/* Fiber No.1 to No.4 are material 1 */
/* Fiber No.5 to No.8 are material 2 */

fiber-map = c 1, 1, 1, 1, 2, 2, 2, 2 1;

/* Define Fiber Attribute */

FiberAttr(no-of-fiber, "fib-name") { FiberMaterialAttr = fiber-attr;
FiberCoordinate = fiber-coord;
FiberArea = fiber-area;
FiberMaterialMap = fiber-map;)

A.2.2 3D Fiber Element with Different Shear Properties

FIBERSDS is the element type name for a three-dimensional two-node fiber

element with different shear properties.

The section properties and material properties are the same as FIBERSD,

except that there is no need to define shear properties in material properties;

they will be defined in FiberMaterialAttr matrix.

Fiber Attribute: FiberMaterialAttr of FIBER-3DS includes the Young’s

modulus, tangent Young’s modulus, yield stress, shear modulus, tangent shear

modulus, and shear yield stress.

198

ABBREVLATED INPUT FILE

/* Element is composed of two different shear properties materials. */

fiber-attr = [El, E2;
Etl, Et2;
fyi, fy2;
Gl, G2;
Gtl, Gt2;
fvl, fv2 I;

BIBLIOGRAPHY

PI

PI

PI

PI

bl

PI

VI

PI Austin M. A., Pister K. S., Mahin S. A. Probabilistic Limit States

Design of Moment Resistant Frames Under Seismic Loading. Journal of

the Structural Division, ASCE, 113(8):1660-1677, August 1987.

AASHTO. Guide Specifications for Seismic Isolation Design. 1991. i

AASHTO. Standard Specifications for Highway Bridges. 1991.

ABA&US. Example Problems Manual, version 5.2. Hibbitt, Karlsson &

Sorensen, Inc., Hibbitt, Karlsson & Sorensen, Inc., 1080 Main Str.,

Pawtuchet, RI 02860, 1992.

Unit Conversion Guide. Fuels and Petrochemical Division of AICHE,

1990.

Allred B. A., Shepherd R. Ultimate Restraint Considerations in

Base-Isolated Bridges. In Proceeding of the Third US-Japan Workshop on

Earthquake Protective Systems for Bridges, 1994. Session 4: Design Issues

and Application 1, U9.

Austin M. A., Chen X. G., Lin W-J. ALADDIN: A Computational

Toolkit for Interactive Engineering Matrix and Finite Element Analysis.

Technical Report TR95-74, Institute for Systems Research, University of

Maryland, College Park, December 1995.

Austin M. A., Pister K. S., Mahin S. A. A Methodology for the

Probabilistic Limit States Design of Earthquake Resistant Structures.

Journal of the Structural Division, ASCE, 113(8):1642-1659, August 1987.

201

[9] Balling R. J., Pister K. S., Polak E. DELIGHTSTRUCT: A

Computer-Aided Design Environment for Structural Engineering.

Computer Methods in Applied Mechanics and Engineering, pages 237-251,

January 1983.

[lo] Bathe K. J. Finite Element Procedures in Engineering Analysis.

Prentice-Hall, Englewood Cliffs, N.J., 1982.

[ll] Chapra S. C., Canale R. P. Numerical Method for Engineers.

McGraw-Hill, Inc., 1985.

[12] Clough R. W., Penzien J. Dynamics of Structures. McGraw-Hill, Inc.,

1984.

[13] Cook R. D., Malkus D. S., Plesha M. E. Concepts and Applications of

Finite Element Analysis. John Wiley & Sons, Inc., New York, 1989.

[14] Craig R. R. Jr. Structural Dynamics - An Introduction to Computer

Methods. John Wiley & Sons, Inc., New York, 1981.

[15] Earthquake Engineering Research Center, UC Berkeley. National

Information Service for Earthquake Engineering.

http://nisee. ce. berkekey. edu.

[16] Filippou F. C., Issa A. Nonlinear Analysis of Reinforced Concrete

Frames Under Cyclic Load Reversals. Technical Report EERC 88-12,

Earthquake Engineering Research Center, Berkeley, 1988.

202

[17] Gallopoulos E., Houstis E. Computer as a Thinker/Doer :

Problem-Solving Enviroments for Computational Science. 1EEE

Computational Science and Engineering, 1(2):11-23, 1994.

[18] Gallopoulos E., Houstis E., Rice J. R. Computer as Thinker/Doer:

Problem-Solving Environments for Computational Science. IEEE

Computational Science & Engineering, pages 11-23, summer 1982.

[19] Gere J. M., Timoshenko S. P. Mechanics of Materials. Wadsworth, Inc.,

1984.

[20] Giannini R., Monti G., Nuti G., Pagnoni T. ASPIDEA: A Program for

Nonlinear Analysis of Isolated Bridges Under Non-synchronous Seismic

Action. Technical Report 5/92, Dipartimento di Ingegneria Civile Delle

Acque e de1 Terreno, Universitb del’ Aquila, 1992.

[21] Goudreau G. L. Computational Structural Mechanics : From National

Defense to National Resource. IEEE Computational Science and

Engineering, 1(1):33-42, 1994.

[22] Johnson S. C. YACC - Yet Another Compiler Compiler. Technical report,

AT&T Bell Laboratories, Murray Hill, New Jersey, 1975.

[23] Kernighan B. W., Pike R. The UNIX Programming Environment.

Prentice-Hall Software Series, 1983.

[24] Kirkpatrick S., Gelatt C. D., Vecchi M. P. Optimization by Simulated

Annealing. Science, 220(4598):671-680, May 1983.

203

[25] Kronlof K. Method Integration : Concepts and Case Studies. John-Wiley

and Sons, 1993.

[26] Lai S., Will G., Otani S. Model for Inelastic Biaxial Bending of

Concrete Members. Journal of Structural Engineering, ASCE,

llO(ST11):2563-2584,1984.

[27] Mahasuverachai M. Inelastic Analysis of Piping and Tubular Stuctures.

Technical Report EERC 82-27, Earthquake Engineering. Research Center,

Berkeley, 1982.

[28] Maragakis E. M., Saiidi M. Development and Application of Simple

Analytical Models Of Lead-Rubber Base Isolated Bridges. In Proceeding of

the Second US-Japan Workshop on Earthquake Protective Systems for

Bridges, pages 275-282, 1992. Technical Memorandum of PWRI No. 3196.

[29] Mayes R. L. Application of AASHTO Seismic Isolation Design and

Analysis Requirements. In Proceeding of the Second US-Japan Workshop

on Earthquake Protective Systems for Bridges, pages 221-237, 1992.

Technical Memorandum of PWRI No. 3196.

[30] Mondkar D. P., Powell G. H. ANSR - 1 General Purpose program for

Analysis of Nonlinear Structural Response. Technical Report EERC 7537,

Earthquake Engineering Research Center, U.C. Berkeley, December 1975.

[31] Nagarajaiah S., Reinhorn A. M., Constantinou M. C. Nonlinear

Dynamic Analysis of 3-D Base-Isolated Structures. JournaZ of Structural

Engineering, 117(7):2035-2054, 1991.

204

.

[32] Nye W. T., Riley D. C., Sangiovanni-Vincentelli A. L., Tits A. L.

DELIGHT.SPICE: An Optimization-Based System for the Design of

Integrated Circuits. IEEE Trans. CAD Integrated Circuits and Systems,

CAD-7, pages 501-520,1987.

[33] Orie D., Saiidi M., Douglas B. A Micro-CAD System for Seismic Design

of Regular Highway Bridges. Technical Report CCEER 88-2, Civil

Engineering Department, University of Nevada, Reno, June 1988.

[34] Penzien J., Imbsen R., Liu W. D. NEABS - Nonlinear Earthquake

Analysis of Bridge Systems. Technical report, Earthquake Engineering

Research Center, Berkeley, June 1981.

[35] Priestley M. J. N., Seible F., Calvi G. M. Seismic Design and Retrofit of

Bridges. John Wiley & Sons, Inc., 1996.

[36] Przemieniecki J. S. Theory of Matrix Structural Analysis. McGraw-Hill,

Inc., 1993.

[37] Robinson W. H. Lead-Rubber Hysteretic Bearings Suitable for Protecting

Structures During Earthquakes. Earthquake Engineering and Structural

Dynamics, 10:593-604, 1982.

[38] Saiidi M., Lawver R., Hart J. User’s Manual for ISADAB and SIBA,

Computer Programs for Nonlinear Transverse Analysis of Highway Bridges

Subjected to Static and Dynamic Lateral Loads. Technical Report

CCEER 86-2, Civil Engineering Department, University of Nevada, Reno,

September 1986.

205

[39] Salter K. G. A Methodology for Decomposing System Requirements into

Data Processing Requirements. Proc. 2nd Int. Conf. on Software

Engineering, 1976.

[40] Schelling D. ENCE751: Advanced Probelms in Structural Behavior,

Department of Civil Engineering, University of Maryland, College Park,

1993. Class Notes.

[41] Sheng L. H., Hwang J. S., Gates J. H. Current CALTRANS Analysis

Methods of Bridges Isolated with Bi-Linear Hysteresis Bearings. In

Proceeding of the Third US-Japan Workshop on Earthquake Protective

Systems for Bridges, 1994. Session 4: Design Issues and Application 1, U8.

[42] Shenton H. W. III, Taylor A. W. Guidelines and Benchmarks for

Analysis of Isolated Buildings. In Analysis and Computation, Proceedings

of the twelfth Conference held in conjunction with Structures Congress

XIV, pages 236-245,1996.

[43] Skinner R. I., Robinson W. H., McVerry G. H. An Introduction to

Seismic IsoEation. John Wiley & Sons, Inc., 1993.

[44] Stroud A. H., Secrest D. Gaussian Quadrature Formulas. Prentice-Hall,

Inc., 1966.

[45] Structural Engineers Association of California. Performance Based Seismic

Engineering of Buildings. 1, April 1995. Part 1 : Interim

Recommendations, Part 2 : Conceptual Framework.

[46] Tauter F., Spacone E., Filippou F. C. A Fiber Beam-Column Element

for Seismic Response Analysis Of Reinforced Concrete Structures.

206

WI

P81

WI

PI

Technical Report UCB/EERC-91/17, Earthquake Engineering Research

Center, UC Berkeley, December 1991.

Tesler L.G. Networked Computing in the 1990’s. Scientific American,

265(3):86-93, September 1991.

The MathWorks, Inc. The Student Edition of MATLAB: Version 4 User’s

Guide. Prentice-Hall, Inc., 1995.

Weaver, W. Jr., Gere, J. M. Matrix Analysis of Framed Structures. D.

Van Nostrand Company, 135 West 50th Street, New York, NY 10020, 2

edition, 1980.

Wilson E. L., Farhoomand I., Bathe K. J. Nonlinear Dynamic Analysis

of Complex Structures. Earthquake Engineering and Structural Dynamics,

Vol. 1:241-252, 1973.

Wu T. L. DELIGHT.MIMO : An Interactive System for

Optimization-Based Multivariable Control System Design. Technical

Report UCB/ERL-M86/90, Department of Electrical Engineering, U.C.

Berkeley, December 1986.

[52] Zienkiewicz 0. C. The Finite Element Method. McGraw-Hill, Inc, 3

edition, 1986.

[53] Zienkiewitz 0. C., Taylor R. L. The Finite Element Method.

McGraw-Hill, Inc, 1989. For details on FEAP, see Chapter 15.

207

ReC@ed
Recyclable

_c , . . - . _

HRD//l2-99(400)E

